NATIONAL LEVEL SCIENCE TALENT SEARCH EXAMINATION - 2015 (UPDATED)

Paper Code: UN412

Solutions for Class: 11 (PCM)

Mathematics

1. (C) We have, $\sec \theta+\tan ^{3} \theta \operatorname{cosec} \theta$

$$
\begin{aligned}
& =\sec \theta\left(1+\tan ^{3} \theta \frac{\operatorname{cosec} \theta}{\sec \theta}\right) \\
& =\sec \theta\left(1+\tan ^{3} \theta \cdot \cot \theta\right)=\sec \theta\left(1+\tan ^{2} \theta\right) \\
& =\sec \theta \sec ^{2} \theta=\sec ^{3} \theta \\
& =\left(\sec ^{2} \theta\right)^{3 / 2}=\left(1+\tan ^{2} \theta\right)^{3 / 2} \\
& \left(1+1-\mathrm{e}^{2}\right)^{3 / 2}=\left(2-\mathrm{e}^{2}\right)^{3 / 2}\left[\text { Since }, \tan ^{2} \theta=1-\mathrm{e}^{2}\right]
\end{aligned}
$$

2. (C) Since a, b, c are in H.P.,
$\therefore \frac{1}{\mathrm{a}}, \frac{1}{\mathrm{~b}}, \frac{1}{\mathrm{c}}$ are in A.P.
$\Rightarrow \frac{1}{\mathrm{a}}+\frac{1}{\mathrm{c}}=\frac{2}{\mathrm{~b}}$

The given line is $\frac{x}{a}+\frac{y}{b}+\frac{1}{c}=0$
$\Rightarrow \frac{x}{\mathrm{a}}+\frac{\mathrm{y}}{\mathrm{b}}+\left(\frac{2}{\mathrm{~b}}-\frac{1}{\mathrm{a}}\right)=0$
$\Rightarrow \frac{1}{\mathrm{a}}(x-1)+\frac{1}{\mathrm{~b}}(\mathrm{y}+2)=0$
\Rightarrow The given line passes through the point of intersection of $x-1=0$ and $y+2=0$ i.e., $(1,-2)$ which is a fixed point.
3. (D) We know that

$$
\begin{aligned}
& \mathrm{n}(\mathrm{~A} \cup \mathrm{~B})=\mathrm{n}(\mathrm{~A})+\mathrm{n}(\mathrm{~B})-\mathrm{n}(\mathrm{~A} \cap \mathrm{~B}) \\
& \text { Also } \mathrm{n}(\mathrm{~A} \cap \mathrm{~B}) \leq \min \{\mathrm{n}(\mathrm{~A}), \mathrm{n}(\mathrm{~B})\} \\
& \quad=\min \{3,6\}=3 \\
& \Rightarrow \mathrm{n}(\mathrm{~A} \cap \mathrm{~B}) \leq 3 \Rightarrow-\mathrm{n}(\mathrm{~A} \cap \mathrm{~B}) \geq-3 \\
& \Rightarrow \mathrm{n}(\mathrm{~A} \cup \mathrm{~B})=\mathrm{n}(\mathrm{~A})+\mathrm{n}(\mathrm{~B})-\mathrm{n}(\mathrm{~A} \cap \mathrm{~B}) \\
& \quad \geq \mathrm{n}(\mathrm{~A})+\mathrm{n}(\mathrm{~B})-3
\end{aligned}
$$

$\Rightarrow \mathrm{n}(\mathrm{A} \cup \mathrm{B}) \geq 6$
\Rightarrow Minimum number of elements in $A \cup B$ is 6 .
4. (C) We have, $7^{103}=7(49)^{51}=7(50-1)^{51}$
$=7\left(50^{51}-{ }^{51} \mathrm{C}_{1} 50^{50}+{ }^{51} \mathrm{C}_{2} 50^{49}-\ldots-1\right)$
$=7\left(50^{51}-{ }^{51} \mathrm{C}_{1} 50^{50}+{ }^{51} \mathrm{C}_{2} 50^{49}-\ldots\right)-25+18$
$=\mathrm{k}+18$ (say), since k is divisible by 25 ,
\therefore Remainder is 18 .
5. (A) Let $\mathrm{f}(x)=x$ and $\mathrm{g}(x)=x^{3}$. Then $\mathrm{f}(x) \mathrm{g}(x)$
$=x^{4}$, even; option (A) is false.
Let $\mathrm{f}(x)$ and $\mathrm{g}(x)$ are two even functions and $\mathrm{F}(x)=\mathrm{f}(x)+\mathrm{g}(x)$
$\mathrm{F}(-x)=\mathrm{f}(-x)+\mathrm{g}(-x)=\mathrm{f}(x)+\mathrm{g}(x)=\mathrm{F}(x)$
$\Rightarrow \mathrm{F}(x)$ is even, option (B) is true.
Let $\mathrm{f}(x)$ be an even function and $\mathrm{g}(x)$ be an odd function and $\mathrm{F}(x)=\mathrm{f}(x) \mathrm{g}(x)$
$\mathrm{F}(-x)=\mathrm{f}(-x) \mathrm{g}(-x)=\mathrm{f}(x)(-\mathrm{g}(x))$
$\Rightarrow-\mathrm{F}(x)$ is odd, option (C) is true
(D) $\mathrm{g}(-x)=\frac{\mathrm{f}(-x)+\mathrm{f}(x)}{2}=\frac{\mathrm{f}(x)+\mathrm{f}(-x)}{2}$
$=\mathrm{g}(x)$ is even, option (D) is ture.
6. (C) $\mathrm{T}_{20}=\left(20^{\text {th }}\right.$ term of $\left.2,4,6,8, \ldots\right) \times\left(20^{\text {th }}\right.$ term of $4,6,8, \ldots$)

$$
=[2+(19)(2)][4+(19) 2]=(40)(42)=1680
$$

7. (B) Given statement is not true for $\mathrm{n}=1$ as $1<\left(\frac{1+1}{2}\right)^{1}$ i.e., $1<1$ is not true.

For $\mathrm{n}=2$, the statement becomes
$1 \times 2<\left(\frac{2+1}{2}\right)^{2}$ i.e., $2<\frac{9}{4}$, which is true.
8. (C) Since each question can be deal with in 3 ways
a) by selecting it
b) by selecting its alternative, or
c) by rejecting it.

Thus, the total number of ways of dealing with 10 given questions is 3^{10} including a way in which we reject all the questions.

Hence the number of all possible selections of one or more questions is $3^{10}-1$.
9. (A) We have $\tan \alpha+\tan \beta+\tan \gamma=0$
$\Rightarrow \tan \gamma=-\mathrm{h}$, and since $\tan \gamma$ satisfies the given equation.
$\Rightarrow \mathrm{a} \tan ^{3} \gamma+(2 \mathrm{a}-x) \tan \gamma+\mathrm{y}=0$
$\Rightarrow \mathrm{a}(-\mathrm{h})^{3}+(2 \mathrm{a}-x)(-\mathrm{h})+\mathrm{y}=0$
$\therefore \mathrm{ah}^{3}+(2 \mathrm{a}-x) \mathrm{h}=\mathrm{y}$
10. (A) Let Nisha secure x marks in the fifth test, then her average score

$$
=\frac{87+92+94+95+x}{5}=\frac{368+x}{5}
$$

According to given condition, we must have
$\Rightarrow \frac{368+x}{5} \geq 90$
$\Rightarrow 368+x \geq 90 \times 5$
$\Rightarrow x \geq 450-368$
$\Rightarrow x \geq 82$
11. (B) $\mathrm{y}=\mathrm{e}^{x}$ and $\mathrm{y}=x$
$\Rightarrow \mathrm{e}^{x}=x \Rightarrow$ no $x \in \mathrm{R}$
Hence, $\mathrm{A} \cap \mathrm{B}=\phi$.
12. (C) Solving the given equations in pairs, we get the coordinates of the vertices as
$\mathrm{A}=(-3,3), \mathrm{B}=(1,1), \mathrm{C}=(1,-1)$,
$\mathrm{D}=(-2,-2)$
$\mathrm{m}_{1}=$ slope of $\mathrm{AC}=\frac{-1-3}{1+3}=-\frac{4}{4}=-1$
$m_{2}=$ slope of $\mathrm{BD}=\frac{-2-1}{-2-1}=-\frac{-3}{-3}=1$
$m_{1} \mathrm{~m}_{2}=(-1)(1)=-1$.
So, diagonals AC and BD are perpendicular.
\therefore Angle between AC and BD is $\frac{\pi}{2}$.
13. (A) We have, $\cos (\alpha+\beta) \sin (\gamma+\beta) \sin (\gamma-\delta)$
$\Rightarrow \frac{\sin (\gamma+\delta)}{\sin (\gamma-\delta)}=\frac{\cos (\alpha-\beta)}{\cos (\alpha+\beta)}$
$\Rightarrow \frac{\sin (\gamma+\delta)+\sin (\gamma-\delta)}{\sin (\gamma+\delta)-\sin (\gamma+\delta)}$
$=\frac{\cos (\alpha-\beta)+\cos (\alpha+\beta)}{\cos (\alpha-\beta)-\cos (\alpha+\beta)}$
(applying components and dividendo)
$\Rightarrow \frac{2 \sin \gamma \cos \delta}{2 \cos \gamma \sin \delta}=\frac{2 \cos \alpha \cos \beta}{2 \sin \alpha \sin \beta}$
$\Rightarrow \cot \delta=\cot \alpha \cot \beta \cot \gamma$
14. (D) In case of $\mathrm{R}_{1}, \mathrm{f}(x)=6 x+7$

Clearly, every element of A has a unique image.

Hence, R_{1} represents a function.
Similarly, R_{2} and R_{3} also represent functions.

In case of $\mathrm{R}_{4}, \mathrm{f}(x)= \pm 4 x$
\therefore Every element of A has two unequal images.
e.g., $f(1)= \pm 4, f(2)= \pm 8$ etc.
$\therefore \mathrm{R}_{4}$ is not a function.
15. (D) $(1+4 x)^{-5 / 4} \cdot(1+2 x)^{1 / 2}$
$=\left(1-\frac{5}{4} .4 x\right)\left(1+\frac{1}{2}(2 x)\right)$
$=(1-5 x)(1+x)$
\therefore Coefficient of $x=1-5=-4$
16. (A) Number of triangles formed with 12 points $={ }^{12} \mathrm{C}_{3}=220$
Number of triangles formed with 5 points $={ }^{5} \mathrm{C}_{3}=10$
(Since, 5 points are collinear, so they cannot form a triangle)
Hence, total number of triangles $=220-10=210$
17. (B) $\mathrm{n}(\mathrm{A})=\mathrm{n}(\mathrm{A}-\mathrm{B})+\mathrm{n}(\mathrm{A} \cap \mathrm{B})$

$$
\begin{aligned}
&=30+x+2 x \\
&=30+3 x \\
& \mathrm{n}(\mathrm{~B})= \mathrm{n}(\mathrm{~B}-\mathrm{A})+\mathrm{n}(\mathrm{~A} \cap \mathrm{~B})=x+2 x=3 x \\
& \mathrm{n}(\mathrm{~A})= 2 \mathrm{n}(\mathrm{~B}) \\
& \Rightarrow \quad 30+3 x=2.3 x \\
& \Rightarrow \quad 30=6 x-3 x \\
& \Rightarrow \quad 30=3 x \\
& \Rightarrow \quad x=10
\end{aligned}
$$

18. (A) We have,

$$
\begin{array}{r}
(1+x)^{\mathrm{n}}=\mathrm{C}_{0}+\mathrm{C}_{1} x+\mathrm{C}_{2} x^{2}+\mathrm{C}_{3} x^{3}+\mathrm{C}_{4} x^{4}+\ldots \\
 \tag{1}\\
+\mathrm{C}_{\mathrm{n}} x^{\mathrm{n}} \ldots .(1)
\end{array}
$$

Differentiating w.r.t. x, we get
$\mathrm{n}(1+x)^{\mathrm{n}-1}=\mathrm{C}_{1}+2 \mathrm{C}_{2} x+3 \mathrm{C}_{3} x^{2}+4 \mathrm{C}_{4} x^{3}+\ldots$

$$
\begin{equation*}
+\mathrm{nC}_{\mathrm{n}} x^{\mathrm{n}-1} . \tag{2}
\end{equation*}
$$

Putting $x=1$ in (1) and (2), we get
$2^{\mathrm{n}}=\mathrm{C}_{0}+\mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}+\mathrm{C}_{4}+\ldots \mathrm{C}_{\mathrm{n}} \ldots .$.
and $n 2^{\mathrm{n}-1}=\mathrm{C}_{1}+2 \mathrm{C}_{2}+3 \mathrm{C}_{3}+4 \mathrm{C}_{4}+\ldots$
Adding (3) and (4), we get
$(\mathrm{n}+2) 2^{\mathrm{n}-1}=\mathrm{C}_{0}+2 \mathrm{C}_{1}+3 \mathrm{C}_{2}+\ldots+(\mathrm{n}+1) \mathrm{C}_{\mathrm{n}}$.
19. (C) Since, a, b and c are in A.P.
$\Rightarrow 2 \mathrm{~b}=\mathrm{a}+\mathrm{c}$
Also, p is A.M. between a and b
$\Rightarrow \mathrm{a}, \mathrm{p}, \mathrm{b}$ are in A.P.
$\Rightarrow 2 \mathrm{p}=\mathrm{a}+\mathrm{b}$
Also, p^{\prime} is G.M. between a and b
$\Rightarrow \mathrm{a}, \mathrm{p}^{\prime}, \mathrm{b}$ are in G.P.
$\Rightarrow \mathrm{p}^{\prime}=\sqrt{\mathrm{ab}}$
Similarly,
$2 q=b+c$
and $q^{\prime}=\sqrt{b c}$
$\mathrm{p}^{2}=\frac{(\mathrm{a}+\mathrm{b})^{2}}{4}=\frac{1}{4}\left(\mathrm{a}^{2}+\mathrm{b}^{2}+2 \mathrm{ab}\right) ; \mathrm{p}^{\prime 2}=\mathrm{ab}$ $\mathrm{q}^{2}=\frac{(\mathrm{b}+\mathrm{c})^{2}}{4}=\frac{1}{4}\left(\mathrm{~b}^{2}+\mathrm{c}^{2}+2 \mathrm{bc}\right) ; \mathrm{q}^{\prime 2}=\mathrm{bc}$
$p^{2}-q^{2}=\frac{1}{4}\left(a^{2}-c^{2}-2 b(a-c)\right)=\frac{1}{4}\left(a^{2}-c^{2}+\right.$ $(a+c)(a-c))$
[a a, b, c are in A.P, $2 \mathrm{~b}=\mathrm{a}+\mathrm{c}$]
$=\frac{1}{2}\left(\mathrm{a}^{2}-\mathrm{c}^{2}\right)$
$p^{\prime 2}-q^{\prime 2}=a b-b c=b(a-c)$
$\Rightarrow \frac{(a+c)}{2}(a-c)=\frac{1}{2}\left(\mathrm{a}^{2}-\mathrm{c}^{2}\right)$
$\therefore \mathrm{p}^{2}-\mathrm{q}^{2}=\mathrm{p}^{\prime 2}-\mathrm{q}^{\prime 2}$
20. (D) The given expression
$=\frac{\cos 6 \theta+\cos 4 \theta+5 \cos 4 \theta+5 \cos 2 \theta+10 \cos 2 \theta+10}{\cos 5 \theta+5 \cos 3 \theta+10 \cos \theta}$
$=\frac{2 \cos 5 \theta \cos \theta+5.2 \cos 3 \theta \cos \theta+10.2 \cos ^{2} \theta}{\cos 5 \theta+5 \cos 3 \theta+10 \cos \theta}$
$=\frac{2 \cos \theta(\cos 5 \theta+5 \cos 3 \theta+10 \cos \theta)}{(\cos 5 \theta+5 \cos 3 \theta+10 \cos \theta)}=2 \cos \theta$
21. (D) Since α is a root of the equation.
$\mathrm{a}^{2} x^{2}+\mathrm{b} x+\mathrm{c}=0$
$\therefore \mathrm{a}^{2} \alpha^{2}+\mathrm{b} \alpha+\mathrm{c}=0$
Since β is a root of the equation
$a^{2} x^{2}-b x-c=0$
$\therefore \mathrm{a}^{2} \beta^{2}-\mathrm{b} \beta-\mathrm{c}=0$
Now let $\mathrm{f}(x)=\mathrm{a}^{2} x^{2}+2 \mathrm{~b} x+2 \mathrm{c}$

$$
\begin{align*}
\therefore \mathrm{f}(\alpha) & =\mathrm{a}^{2} \alpha^{2}+2(\mathrm{~b} \alpha+\mathrm{c}) \\
& =\mathrm{a}^{2} \alpha^{2}+2\left(-\mathrm{a}^{2} \alpha^{2}\right) \tag{1}\\
& =-\mathrm{a}^{2} \alpha^{2}<0 \\
& \mathrm{f}(\beta)=-\mathrm{a}^{2} \beta^{2}+2(\mathrm{~b} \beta+\mathrm{c}) \\
& =\mathrm{a}^{2} \beta^{2}+2\left(\mathrm{a}^{2} \beta^{2}\right) \\
& =3 \mathrm{a}^{2} \beta^{2}>0
\end{align*}
$$

[from (2)]

Since $f(\alpha)$ and $f(\beta)$ are of opposite sign and
γ is a root of the equation $\mathrm{f}(x)=0$,
$\therefore \gamma$ must lie between α and β.
Thus $\alpha<\gamma<\beta$.
22. (B) The given digits are $0,1,2,3,4$ which are five in number.
Since we are to form the numbers that are greater than 20000 and as no digits is to be repeated, every such numbers contains five digits and it must have 2,3 or 4 at extreme left.
Thus, the extreme left place can be filled up in 3 ways.
Now the remaining four places can be filled up with the remaining four digits in ${ }^{4} \mathrm{P}_{4}$ ways. By using the principle of association, the required number of numbers formed
$=3 \times{ }^{4} \mathrm{P}_{4}=3 \times \underline{4}=3 \times 4 \times 3 \times 2 \times 1=72$
23. (C) Statement P, 'Cardinality of a singleton set is 1^{\prime}, is true.
Statement Q, 'Cardinality of a null set is 0 ' is true.
Hence (C) is the answer.
24. (C) Let h be the height of the triangle.

Since, the area of the triangle is a^{2}
$\therefore \quad \frac{1}{2} \times \mathrm{a} \times \mathrm{h}=\mathrm{a}^{2} \Rightarrow \mathrm{~h}=2 \mathrm{a}$
Since the base lies along the line $x=\mathrm{a}$, the vertex lies on the line parallel to the base at a distance 2a from it. So, the required lines are

$$
x=\mathrm{a} \pm 2 \mathrm{a} \text { i.e., } x=-\mathrm{a} \text { or } x=3 \mathrm{a}
$$

25. (A) The equation reduces to

$$
\begin{gathered}
\mathrm{E}=(-1)(-2)(-2)^{2} \ldots(-2)^{15} \\
(x-1)\left(x-\frac{1}{2}\right)\left(x-\frac{1}{2^{2}}\right) \ldots\left(x-\frac{1}{2^{15}}\right) \\
\Rightarrow \mathrm{E}=2^{1+2+3+\ldots 15} \\
\quad\left(x-\frac{1}{2}\right)\left(x-\frac{1}{2^{2}}\right) \ldots\left(x-\frac{1}{2^{15}}\right)
\end{gathered}
$$

\therefore Coefficient of x^{15} in E is

$$
\begin{aligned}
& 2^{1+2+3 \ldots 15} \cdot\left(-1-\frac{1}{2}-\frac{1}{2^{2}}-\ldots-\frac{1}{2^{15}}\right) \\
& =2^{120}\left\{(-1) \frac{1-\left(\frac{1}{2}\right)^{15}}{1-\left(\frac{1}{2}\right)}\right\} \\
& =-2^{120}\left\{\left(\frac{2^{16}-1}{2-1}\right) \frac{2}{2^{16}}\right\} \\
& =-2^{105}\left(2^{16}-1\right)=2^{105}-2^{121}
\end{aligned}
$$

26. (C) We have, $(1+\mathrm{i})^{2 \mathrm{n}}=(1-\mathrm{i})^{2 \mathrm{n}}$
$\Rightarrow\left(\frac{1+\mathrm{i}}{1-\mathrm{i}}\right)^{2 \mathrm{n}}$
$\Rightarrow\left[\frac{(1+\mathrm{i})^{2}}{2}\right]^{2 \mathrm{n}}=1$
$\Rightarrow\left[\frac{1-1+2 \mathrm{i}^{2}}{2}\right]^{2 \mathrm{n}}=1$
$\Rightarrow \mathrm{i}^{\mathrm{nn}}=1$
$\Rightarrow \mathrm{n}=2$ is the required smallest positive integer.
27. (C) We have, $f(\theta)=\sin \theta(\sin \theta+\sin 3 \theta)$

$$
=\sin \theta(2 \sin 2 \theta \cos \theta)
$$

$$
=\sin ^{2} 2 \theta \geq 0, \text { for all real } \theta
$$

28. (C)

29. (C) Let the last three numbers in A.P. be b, $b+6, b+12$ and the first number be a.

Hence the four numbers are $a, b, b+6$, b +12

Given, $\mathrm{a}=\mathrm{b}+12$
and $\mathrm{a}, \mathrm{b}, \mathrm{b}+6$ are in G.P. i.e., $\mathrm{b}^{2}=\mathrm{a}(\mathrm{b}+6)$
$\Rightarrow b^{2}=(b+12)(b+6) \quad[$ Since $a=b+12]$
or $18 \mathrm{~b}=-72$
$\therefore \mathrm{b}=-4$
From (i), $\mathrm{a}=-4+12=8$
Hence the four numbers are 8, -4, 2 and 8 .
30. (A) \quad Since, $(a+i b)^{5}=\alpha+i \beta$ (given)

$$
\begin{aligned}
& \Rightarrow\left\{\left(\frac{a}{l}+b\right)\right\}^{5}=\alpha+1 \beta \\
& \Rightarrow \mathfrak{l}^{5}(b-1 a)^{5}=\alpha+1 \beta\left(\text { since } \mathfrak{l}=\frac{1}{\imath}\right) \\
& \Rightarrow 1=(b-1 a)^{5}=\alpha+1 \beta \\
& \Rightarrow(b-1 a)^{5}=\frac{\alpha+1 \beta}{\imath}=\imath(\alpha+1 \beta) \\
& \Rightarrow(b-1 a)^{5}=1 \alpha+1 \beta
\end{aligned}
$$

Taking conjugate through out, we have
$(\overline{\mathrm{b}-1 \mathrm{a}})^{5}=(\overline{\beta+1 \alpha})$
$\therefore(b+1 a)^{5}=\beta+1 \alpha$
31. (C) Let n be the number of newspapers which are read.
$\Rightarrow 60 \mathrm{n}=(300)(5)$
$\therefore \mathrm{n}=25$
32. (A) Let orthocentre be (α, β).

Then, $3=\frac{2(6)+1 \cdot \alpha}{2+1}$ and $3=\frac{2(2)+1 \cdot \beta}{2+1}$
$\Rightarrow \alpha=-3$ and $\beta=5$
\therefore Orthocentre is $(-3,5)$.
33. (B) We have,
$\frac{\cos A}{\sin B \sin C}+\frac{\cos B}{\sin A \sin C}+\frac{\cos C}{\sin A \sin B}$
$=\frac{\sin \mathrm{A} \cos \mathrm{A}+\sin \mathrm{B} \cos \mathrm{B}+\sin \mathrm{C} \cos \mathrm{C}}{\sin \mathrm{A} \sin \mathrm{B} \sin \mathrm{C}}$
$=\frac{\sin 2 \mathrm{~A}+\sin 2 \mathrm{~B}+\sin 2 \mathrm{C}}{2 \sin \mathrm{~A} \sin \mathrm{~B} \sin \mathrm{C}}$
$=\frac{4 \sin \mathrm{~A} \sin \mathrm{~B} \sin \mathrm{C}}{2 \sin \mathrm{~A} \sin \mathrm{~B} \sin \mathrm{C}}=2$
34. (C) $A_{1}=\{2\}, A_{2}=\{2,4\}, A_{3}=\{2,4,6\}$ and so on.

Therefore $\bigcap_{n=1}^{2007} A_{n}=\{2\}$
35. (A) $\left({ }^{7} \mathrm{C}_{0}+{ }^{7} \mathrm{C}_{1}\right)+\left({ }^{7} \mathrm{C}_{1}+{ }^{7} \mathrm{C}_{2}\right)+\ldots+\left({ }^{7} \mathrm{C}_{6}+{ }^{7} \mathrm{C}_{7}\right)$
$={ }^{8} \mathrm{C}_{1}+{ }^{8} \mathrm{C}_{2}+\ldots .+{ }^{8} \mathrm{C}_{7}$
$=\left({ }^{8} \mathrm{C}_{0}+{ }^{8} \mathrm{C}_{1}+{ }^{8} \mathrm{C}_{2}+\ldots+{ }^{8} \mathrm{C}_{7}+{ }^{8} \mathrm{C}_{8}\right)-\left({ }^{8} \mathrm{C}_{0}+{ }^{8} \mathrm{C}_{8}\right)$
$=2^{8}-1(1+1)=2^{8}-2$
36. (A) Let $x^{18}=y^{21}=z^{28}=k$. Then,
$18 \log x=21 \log \mathrm{y}=28 \log \mathrm{z}=\log \mathrm{k}$
$\Rightarrow \log _{\mathrm{y}} x=\frac{21}{18}, \log _{\mathrm{z}} \mathrm{y}=\frac{28}{21}, \log _{x} \mathrm{z}=\frac{18}{28}$
$\Rightarrow 3 \log _{y} x=\frac{7}{2}, 3 \log _{z} y=4,7 \log _{x} z=\frac{9}{2}$
$\Rightarrow 3,3 \log _{y} \mathrm{z}, 3 \log _{z} \mathrm{y}=4,7 \log _{x} \mathrm{z}$ are in A.P.
37. (C) We have $(x, y) \in \mathrm{R}$ iff $x+\mathrm{y}<6$

Given the value $x=1$, we get possible values of $\mathrm{y}=1,2,3,4$.

Thus 1R1, 1R2, 1R3, 1R4. Similarly we may find other values. The set of such ordered pairs is R
$=\{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3)$, $(3,1)(3,2),(4,1)\}$
$\mathrm{n}(\mathrm{R})=10$
38. (C) $\alpha+\beta+\gamma=p, \alpha \beta+\beta \gamma+\gamma \alpha=q, \alpha \beta \gamma=r$
$\therefore(\beta+\gamma-\alpha)(\gamma+\alpha-\beta)(\alpha+\beta-\gamma)$
$=(p-2 \alpha)(p-2 \beta)(p-2 \gamma)$

$$
=\mathrm{p}^{3}-2(\alpha+\beta+\gamma) \mathrm{p}^{2}+4(\alpha \beta+\beta \gamma+\gamma \alpha)
$$

$$
\mathrm{p}-8 \alpha \beta \gamma
$$

$$
=\mathrm{p}^{3}+4 \mathrm{pq}-8 \mathrm{r}
$$

39. (C) We have, $\sin (\mathrm{A}+\mathrm{B}+\mathrm{C})=1$,
$\tan (\mathrm{A}-\mathrm{B})=\frac{1}{\sqrt{3}}$ and $\sec (\mathrm{A}+\mathrm{C})=2$
$\Rightarrow \mathrm{A}+\mathrm{B}+\mathrm{C}=90^{\circ}, \mathrm{A}-\mathrm{B}=30^{\circ}$ and $\mathrm{A}+\mathrm{C}=60^{\circ}$
$\Rightarrow \mathrm{B}=30^{\circ}, \mathrm{A}=60^{\circ}$ and $\mathrm{C}=0^{\circ}$
40. (D) We have $\frac{1}{\mathrm{n}(\mathrm{n}+1)}=\frac{1}{\mathrm{n}}-\frac{1}{\mathrm{n}+1}$

$$
\begin{aligned}
& \therefore \quad \frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\ldots \ldots . \\
&+\frac{1}{2007 \times 2008}
\end{aligned}
$$

$$
=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\ldots .
$$

$$
+\frac{1}{2007}-\frac{1}{2008}
$$

$$
=1-\frac{1}{2008}=\frac{2007}{2008}
$$

Physics
41. (B)

$\mathrm{u}=100 \mathrm{~m} \mathrm{~s}^{-1}$
$\mathrm{v}=0 \mathrm{~m} \mathrm{~s}^{-1}$
$\mathrm{a}=$?
$\mathrm{t}=0.02 \mathrm{~s}$
$\mathrm{v}=\mathrm{u}+\mathrm{at}$
$0=100+\mathrm{a} \times 0.02$
$0.02 \mathrm{a}=-100$
$\mathrm{a}=-100 / 0.02$
$\mathrm{a}=-5000 \mathrm{~m} \mathrm{~s}^{-2}$
A bullet penetrating a wooden block
$\mathrm{F}=? \quad \mathrm{~m}=0.01 \mathrm{~kg} \quad \mathrm{a}=-5000 \mathrm{~m} \mathrm{~s}^{-2}$
$\mathrm{F}=\mathrm{ma}$
$\mathrm{F}=0.01 \times(-5000)$
The average retarding force exerted by the wood is -50 N .
42. (A) $\mathrm{T}_{1}=27+273=300 \mathrm{~K}$
$\mathrm{T}_{2}=-13+273=260 \mathrm{~K}$
Coefficient of performance $=$
$\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}-\mathrm{T}_{2}}=\frac{260}{300-260}=\frac{260}{40}=6.5$
43. (B) On the surface of the earth
$\mathrm{g}=\frac{\mathrm{GM}}{\mathrm{R}^{2}}$; Weight $\mathrm{mg}=99 \mathrm{~N}$
At a height h above the earth
$\mathrm{g}^{\prime}=\frac{\mathrm{GM}}{(\mathrm{R}+\mathrm{h})^{2}}$, where $\mathrm{h}=\frac{\mathrm{R}}{2}$
$\frac{g^{\prime}}{g}=\frac{R^{2}}{(R+h)^{2}}=\frac{R^{2}}{\left(R+\frac{R}{2}\right)^{2}}=\frac{R^{2}}{\frac{9}{4} R^{2}}$
$\mathrm{g}^{\prime}=\frac{4 \mathrm{~g}}{9}$
Weight $=\mathrm{mg}^{\prime}=\mathrm{m} \times \frac{4 \mathrm{~g}}{9}=\mathrm{mg} \times \frac{4}{9}$
Here $\mathrm{mg}=99 \mathrm{~N}=99 \times \frac{4}{9}=44 \mathrm{~N}$
44. (B) Mean diameter $=$
$\frac{0.39+0.38+0.39+0.41+0.38+0.37+0.40+0.39}{8}$
$\overline{\mathrm{d}}=0.38875 \mathrm{~mm}$
$=0.39 \mathrm{~mm}$ (rounded off to two significant figures)
Absolute error in the first reading $=$
$0.39-0.39=0.00 \mathrm{~mm}$
Similarly finding the absolute error in the other seven readings and taking the mean;

Mean absolute error $=\overline{\Delta \mathrm{d}}=$
$\frac{0.00+0.01+0.00+0.02+0.01+0.02+0.01+0.00}{8}$
$=0.00875=0.01 \mathrm{~mm}$
Relative error $=\frac{\overline{\Delta \mathrm{d}}}{\mathrm{d}}=\frac{0.01}{0.39}=0.0256$
45. (B) Energy stored per unit volume
$\mathrm{U}=\frac{1}{2}$ stress \times strain
$=\frac{1}{2} \operatorname{stress} \times \frac{\text { strain }}{\mathrm{Y}}$
$=\frac{1}{2} \mathrm{~S} \times \frac{\mathrm{S}}{\mathrm{Y}}=\frac{1 \mathrm{~S}^{2}}{2 \mathrm{Y}}$
46. (B) A raw egg behaves like a spherical shell and a half boiled egg behaves like a solid sphere.

$$
\therefore \frac{\mathrm{I}_{\mathrm{r}}}{\mathrm{I}_{\mathrm{s}}}=\frac{2 / 3 \mathrm{MR}^{2}}{2 / 5 \mathrm{MR}^{2}}=\frac{5}{3}>1
$$

47. (B)
$x_{1}=30 \times \frac{1}{2} \mathrm{~km}, x_{2}=50 \times \frac{1}{2} \mathrm{~km}$
$x=x_{1}+x_{2}=40 \mathrm{~km}$
$v=\frac{x}{t}=\frac{40 \mathrm{~km}}{1 \mathrm{~h}}=40 \mathrm{~km} \mathrm{~h}^{-1}$
48. (C) Mass $\mathrm{m}=1500 \mathrm{~kg}, \mathrm{~h}=50 \mathrm{~m}$
$\mathrm{t}=2 \times 60=120 \mathrm{~s}$
Power $=\frac{\mathrm{W}}{\mathrm{t}}=\frac{\mathrm{mgh}}{\mathrm{t}}=\frac{1500 \times 9.8 \times 50}{2 \times 60}$
$=6125 \mathrm{~W}$
Power of the engine operating the lift
$=\frac{100 \times 6125}{75}=8166.67 \mathrm{~W}$
49. (C) On the surface of the earth, the atmospheric pressure is quite high. The astronauts will feel great discomfort if they move on the earth immediately after coming back from the moon. To avoid it, they need to get used to normal air pressure gradually. That is why, they have to live for some days in a caravan with the air pressure lower than outside.
50. (B) Here $\frac{\Delta t}{t}=\frac{1}{10^{11}}$
$\Delta t=\frac{1}{10^{11}} \times t=\frac{1}{10^{11}} \times 10^{11}=1$
or $\Delta t=1 \mathrm{~s}$
Hence, maximum difference in time between two such clocks $=2 \mathrm{~s}$
One may be 1 s faster and the other may be 1 s slower.
51. (D) $\frac{4 \mathrm{~S}}{\mathrm{r}_{1}}-\frac{4 \mathrm{~S}}{\mathrm{r}_{2}}=\frac{4 \mathrm{~S}}{\mathrm{r}}$
or $\frac{1}{\mathrm{r}}=\frac{1}{\mathrm{r}_{1}}-\frac{1}{\mathrm{r}_{2}}=\frac{1}{4}-\frac{1}{5}=\frac{1}{20}$ or $\mathrm{r}=20 \mathrm{~cm}$
52. (B) As no external torque acts on the system, the angular momentum L is conserved. As the beads slide down, the moment of inertia of the system shall change. As $\mathrm{L}=\mathrm{I} \omega=$ constant and I changes, therefore, ω would change. As no work is being done, total energy cannot change.
53. (C) $\mathrm{a}=\frac{\mathrm{dm}}{\mathrm{dt}}=-10 \mathrm{~kg} \mathrm{~s}^{-1}, \mathrm{~V}_{\mathrm{r}}=5 \mathrm{~km} \mathrm{~s}^{-1}(5000)$
$\mathrm{M}=1500 \mathrm{~kg}, \mathrm{t}=50 \mathrm{~s}$
$\frac{10 \times 5000}{1500-10 \times 50}=50 \mathrm{~m} \mathrm{~s}^{-2}$
54. (A) Here, $\mathrm{m}=0.5 \mathrm{~kg}, \mathrm{v}=1.5 \mathrm{~m} \mathrm{~s}^{-1}$
$\mathrm{K}=50 \mathrm{~N} \mathrm{~m}^{-1}$
$x=$?
$\frac{1}{2} \mathrm{~K} x^{2}=\frac{1}{2} \mathrm{mv}^{2}$
$x=\mathrm{v} \sqrt{\frac{\mathrm{m}}{\mathrm{K}}}=1.5 \sqrt{\frac{0.5}{50}}=0.15 \mathrm{~m}$
55. (A) Relative velocity of overtaking $=$
$40 \mathrm{~m} \mathrm{~s}^{-1}-30 \mathrm{~m} \mathrm{~s}^{-1}=10 \mathrm{~m} \mathrm{~s}^{-1}$.
Total distance covered with this relative velocity during overtaking will be =
$100 \mathrm{~m}+200 \mathrm{~m}=300 \mathrm{~m}$.
Time taken $\mathrm{t}=300 \mathrm{~m} / 10 \mathrm{~m} \mathrm{~s}^{-1}=30 \mathrm{~s}$
56. (D) Specific heat (in cal/g/ ${ }^{\circ}$ C) : Copper (0.09)

Aluminium (0.21), Iron (0.11), Lead (0.03).
57. (B) Error in time period is
$\Delta \mathrm{T}=(0.1 / 20) \mathrm{s}=0.005 \mathrm{~s}$.
Also $T=(20 \mathrm{~s} / 20)=1 \mathrm{~s}$
Hence $\frac{\Delta \mathrm{T}}{\mathrm{T}}=\frac{0.005}{1}=0.005 \times 100 \%=0.5 \%$
58.
(B) $\quad \mathrm{C}_{\mathrm{m}}=\frac{3}{2} \mathrm{R}, \mathrm{C}_{\mathrm{di}}=\frac{5}{2} \mathrm{R}$.

If change in temperature is ΔT, then
$1 \times \frac{3}{2} \mathrm{R} \Delta \mathrm{T}+1 \times \frac{5}{2} \mathrm{R} \Delta \mathrm{T}=2 \times \mathrm{C}_{\mathrm{v}} \times \Delta \mathrm{T}$
This gives $\mathrm{C}_{\mathrm{v}}=2 \mathrm{R}$
59. (A) $\mathrm{g}=\frac{\mathrm{GM}}{\mathrm{R}^{2}}=\frac{\mathrm{G}}{\mathrm{R}^{2}} \times \frac{4}{3} \pi \mathrm{R}^{3} \rho=\frac{4}{3} \pi$ GR ρ,
i.e. $\mathbf{g} \propto \rho$
$\therefore \frac{g^{\prime}}{g}=\frac{2 \rho}{\rho}=2$
or $\mathrm{g}^{\prime}=2 \mathrm{~g}=2 \times 9.8=19.6 \mathrm{~m} \mathrm{~s}^{-2}$
60. (C)
$v=\frac{\mathrm{m}_{1} \mathrm{u}_{1}+\mathrm{m}_{2} \mathrm{u}_{2}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}=\frac{40 \times 4+60 \times 2}{40+60}$
$=2.8 \mathrm{~m} \mathrm{~s}^{-1}$
Loss in K.E. $=$
$\frac{1}{2} \mathrm{~m}_{1} \mathrm{u}_{1}^{2}+\frac{1}{2} \mathrm{~m}_{2} \mathrm{u}_{2}^{2}-\frac{1}{2}\left(\mathrm{~m}_{1}+\mathrm{m}_{2}\right) v^{2}$
$\frac{1}{2}\left[40 \times 16+60 \times 4-100 \times 2.8^{2}\right]=48 \mathrm{~J}$
61. (A) Temperature of source $=$
$\mathrm{T}_{1}=100+273=373 \mathrm{~K}$
Temperature of sink =
$\mathrm{T}_{2}=30+273=303 \mathrm{~K}$
Efficiency $=\eta=\frac{T_{1}-T_{2}}{T_{1}}$
$=\frac{373-303}{373}=0.188=18.8 \%$
62. (A) The vertical displacement of the two stones and their initial velocities are the same. So, the final velocity acquired by them should also be equal.
For the stone thrown vertically upwards
$\mathrm{a}=-\mathrm{g}, \quad \mathrm{s}=-\mathrm{h}$
$\mathrm{v}_{1}{ }^{2}=\mathrm{u}^{2}+2 \mathrm{as}$
$\mathrm{v}_{1}^{2}=\mathrm{u}^{2}+2(-\mathrm{g})(-\mathrm{h})=\mathrm{u}^{2}+2 \mathrm{gh}$
For the stone thrown vertically downwards,
$\mathrm{a}=+\mathrm{g}, \mathrm{s}=\mathrm{h}$
$\mathrm{v}_{2}{ }^{2}=\mathrm{u}^{2}+2 \mathrm{gh}$
$\frac{\mathrm{v}_{1}{ }^{2}}{\mathrm{v}_{2}{ }^{2}}=\frac{\mathrm{u}^{2}+2 \mathrm{gh}}{\mathrm{u}^{2}+2 \mathrm{gh}}=1$
$\mathrm{v}_{1}: \mathrm{v}_{2}=1: 1$
63. (C) Time taken in reaching bottom of incline is
$\mathrm{t}=\sqrt{\frac{2 l\left(1+K^{2} / R^{2}\right)}{g \sin \theta}}$
For solid cylinder (SC), $\mathrm{K}^{2}=\mathrm{R}^{2} / 2$
For hollow cylinder (HC), $\mathrm{K}^{2}=\mathrm{R}^{2}$
For solid sphere $(S), K^{2}=\frac{2}{5} \mathrm{R}^{2}$
$\therefore \mathrm{t}_{\mathrm{S}}<\mathrm{t}_{\mathrm{SC}}<\mathrm{t}_{\mathrm{HC}}$
64. (B) Here $\mathrm{d} x_{1}=\mathrm{d} x_{2}, \mathrm{~A}_{1}=\mathrm{A}_{2}, \frac{\mathrm{~K}_{1}}{\mathrm{~K}_{2}}=\frac{2}{3}$

Let θ be the temp. of the junction.
As $\frac{\mathrm{dQ}_{1}}{\mathrm{dt}}=\frac{\mathrm{dQ}_{2}}{\mathrm{dt}}$
$\therefore \mathrm{K}_{1} \mathrm{~A}_{1} \frac{\mathrm{dT}_{1}}{\mathrm{dx}_{1}}=\mathrm{K}_{2} \mathrm{~A}_{2} \frac{\mathrm{dT}_{2}}{\mathrm{dx}_{2}}$
$K_{1}=(100-\boldsymbol{\theta})=K_{2}(\boldsymbol{\theta}-0)$
or $\frac{\mathrm{K}_{1}}{\mathrm{~K}_{2}}=\frac{\theta}{100-\theta}=\frac{2}{3}$
$3 \theta=200-2 \theta ; 5 \theta=200 ; \theta=40^{\circ} \mathrm{C}$
65. (C) $\mathrm{m}=3 \mathrm{~kg}, \mathrm{u}=10 \mathrm{~m} \mathrm{~s}^{-1}, \mathrm{v}=0$

Impulse $=\mathrm{F} \times \mathrm{t}=$?
Impulse $=$ Change in momentum
$\mathrm{F} \times \mathrm{t}=\mathrm{m}(\mathrm{v}-\mathrm{u})$
$=3[0-10]=-30 \mathrm{~N} \mathrm{~s}$

Chemistry

66. (C) The set of elements given in options (A), (B) and (D) have decreasing atomic radius.
Atomic radius in (${ }_{\mathrm{A}}^{\mathrm{A}}$)
Oxygen 0.73
Sulphur 1.09
Selenium 1.16
Tellurium 1.35
As the atomic number increases within a group, the atomic size increases accordingly.
67. (D) All the alkali metals and their salts impart colour to bunsen flame. The colours imparted by different alkali metals are as follows.

Element	Li	Na	K	Rb	Cs
Colour	Crimson	Golden	Pale	Red	Bluish
	red	yellow	violet	violet	

When heat energy is supplied to alkali metal atom or ion in salt, the electronic excitation occurs in which electron jumps to higher energy level. When this excited electron deexcites to ground state, the energy is emitted in the form of electromagnetic radiation which lies in visible region thereby imparting colour to the flame. The colour of flame depends upon the wavelength of radiation emitted e.g., yellow D-line of Na spectra arises from $3 \mathrm{~s}^{1} \rightarrow 3 \mathrm{p}^{1}$ transition.
68. (A) $\mathrm{CO}=\mathrm{N}_{2}=\mathrm{wg} \therefore \mathrm{n}_{1}(\mathrm{CO})=\frac{\mathrm{w}}{28}$
$\mathrm{n}_{2}\left(\mathrm{~N}_{2}\right)=\frac{\mathrm{w}}{28}$. Hence, $\mathrm{P}_{\mathrm{N}_{2}}=\mathrm{P}_{\mathrm{CO}}$
*69. (C)
70. (D) Only coloured salts will form coloured metal metaborates.
71. (B) BF_{3} is triangular planar and $\mathrm{B}_{2} \mathrm{H}_{6}$ is a dimer of triangular planar molecule $\left(\mathrm{BH}_{3}\right)$, therefore, both of these have zero dipole moment. NH_{3} and NF_{3}, on the other hand have pyramidal structures and thus have dipole moments.

In NH_{3}, the dipole moments of the three $\mathrm{N}-\mathrm{H}$ bonds reinforce the dipole moment due to lone pair of electrons but in NF_{3}, the dipole moments of the three N-F bonds oppose the dipole moment due to lone pair of electrons. As a result, dipole moment of $\mathrm{NH}_{3}(\mu=1.46 \mathrm{D})$ is higher than that of NF_{3} ($\mu=0.24 \mathrm{D}$).
72. (B) Rise in temperature,
$\Delta \mathrm{t}=(300.78 \mathrm{~K}-294.05 \mathrm{~K})=6.73 \mathrm{~K}$
Heat capacity of the calorimeter $=$
$8.93 \mathrm{~kJ} \mathrm{~K}^{-1}$
Then,
Heat transferred to calorimeter $=$
Heat capacity of calorimeter \times Rise in temperature
$=8.93 \mathrm{~kJ} \mathrm{~K}^{-1} \times 6.73 \mathrm{~K}$
$=60.1 \mathrm{~kJ}$
73. (B) HNO_{3} is added to decompose $\mathrm{Na}_{2} \mathrm{~S}$ and NaCN otherwise $\mathrm{Na}_{2} \mathrm{~S}$ will give black ppt. of $\mathrm{Ag}_{2} \mathrm{~S}$ and NaCN will give white ppt. of AgCN which would interfere with the test of halogens.
74. (A) 2-Ethylanthraquinol \rightarrow

2-Ethylanthraquinone $+2 \mathrm{H}_{2} \mathrm{O}_{2}$
75. (C) $\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{NO}]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]}=\frac{\left(1.2 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}\right)^{2}}{4.8 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}}$
$=3 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$
76. (A) $\mathrm{C}: \mathrm{H}=\frac{12 \times 100}{13 \times 12}=\frac{1 \times 100}{13 \times 1}=1: 1$
\therefore E.F. $=\mathrm{CH}$
Since, P decolourises $\mathrm{Br}_{2}-\mathrm{H}_{2} \mathrm{O}$, but Q does not, therefore, $\mathrm{P}=\mathrm{C}_{2} \mathrm{H}_{2}$ (acetylene) and $\mathrm{Q}=\mathrm{C}_{6} \mathrm{H}_{6}$ (benzene).
77. (B) According to Fajan's rule, the covalent bonding is maximum when W^{+}is small and X^{-}is large.
78. (A) $\mathrm{TiH}_{1.73}$ is a non-stoichiometric metallic or interstitial hydride.
79. (A) Except lime ($50-60 \%$), the major constituent of cement is silica ($20-25 \%$).
80. (D) (a) It is exact neutralisation. Hence, $\mathrm{pH}=7$.
(b) After neutralisation, $\frac{\mathrm{M}}{10} \mathrm{HCl}$ left $=10 \mathrm{~m} l$.
Total volume $=100 \mathrm{~m} l$
Dilution $=10$ times.
$\therefore\left[\mathrm{H}^{+}\right]=10^{-2}$
or $\mathrm{pH}=2$
(c) After neutralisition, $\frac{\mathrm{M}}{10} \mathrm{NaOH}$ left $=80 \mathrm{ml}$.
Total volume $=100 \mathrm{ml} . \mathrm{pH}>7$.
(d) After neutralisation, $\frac{\mathrm{M}}{5} \mathrm{HCl}$ left $=50 \mathrm{~m} l$.
Total volume $=100 \mathrm{~m} l$
Dilution $=2$ times
*69. (C) The sum of mass \% is 99.8. Hence, there is no oxygen in the given compound.

Element	Mass \%	Atomic mass	Atomic ratio	Simplest ratio	Simplest whole number ratio
C	64.4	12	$64.4 / 12=5.37$	$5.37 / 0.53=10.1$	10
H	5.5	1	$5.5 / 1=5.5$	$5.5 / 0.53=10.4$	10
Fe	29.9	56	$29.9 / 56=0.53$	$0.53 / 0.53=1$	1

Thus, the empirical formula of the compound is $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Fe}$.

$$
\therefore\left[\mathrm{H}^{+}\right]=\frac{1}{10}=10^{-1} \mathrm{M} \text { or } \mathrm{pH}=1
$$

81. (C) $\mathrm{BaO}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{BaSO}_{4}+\mathrm{H}_{2} \mathrm{O}_{2}$

In this reaction, none of the elements undergo, a change in oxidation number or valency.
82. (A) Structure of $\mathrm{B}_{2} \mathrm{H}_{6}$ contains four $2 \mathrm{c}-2 \mathrm{e}$ bonds and two $3 \mathrm{c}-2 \mathrm{e}$ bonds.
83. (C) Molar mass of acetylene $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$, $\mathrm{M}=(2 \times 12+2 \times 1) \mathrm{g} / \mathrm{mol}=26 \mathrm{~g} / \mathrm{mol}$
Mass of acetylene, $\mathrm{m}=5.0 \mathrm{~g}$
Temperature, $\mathrm{T}=\left(50{ }^{\circ} \mathrm{C}+273\right)=323 \mathrm{~K}$
Pressure, $\mathrm{P}=740 \mathrm{~mm} \mathrm{Hg}=\frac{740}{760} \mathrm{~atm}$ $=0.9737 \mathrm{~atm}$
Using the gas equation,
$\mathrm{PV}=\mathrm{nRT}=\frac{\mathrm{m}}{\mathrm{M}} \mathrm{RT}$
$\mathrm{V}=\frac{\mathrm{mRT}}{\mathrm{MP}}$
$\frac{5.0 \mathrm{~g} \times 0.082 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \times 323 \mathrm{~K}}{26 \mathrm{~g} \mathrm{~mol}^{-1} \times 0.9737 \mathrm{~atm}}$ $=5.23 \mathrm{~L}$
84. (A) $\mathrm{c}=\mathrm{v} \lambda$ or $\lambda=\frac{\mathrm{c}}{\mathrm{v}}=\frac{3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}}{589 \times 10^{-9} \mathrm{~m}}$ $=5.1 \times 10^{14} \mathrm{~s}^{-1}($ or Hz)
85. (B) $\%$ of $\mathrm{S}=\frac{32}{233} \times \frac{0.233}{0.32} \times 100=10$
86. (D) I has the tendency to lose as well as gain electrons. Oxidation states of
Cs $=+1$
$\mathrm{F}=-1,0$
$\mathrm{Xe}=\mathrm{Nil}$
$\mathrm{I}=-1,0,+1,+3,+5,+7$
87. (A) NH_{4}^{+}is a conjugate acid of the base NH_{3}.
88. (B) Cs with low IE is used in photoelectric cells.
89. (C) For PCl_{3},
$\mathrm{X}=\frac{1}{2}=[\mathrm{VE}+\mathrm{MA}-\mathrm{c}+\mathrm{a}]$
$\frac{1}{2}[5+3-0+0]=4$
\therefore Hybridization of P in PCl_{3} is sp^{3}.
For $\mathrm{PCl} l_{5}$.
$\mathrm{X}=\frac{1}{2}[5+5-0+0]=5$
\therefore Hybridization of P in PCl_{5} is $\mathrm{sp}^{3} \mathrm{~d}$.
90. (B) Due to the poor shielding (screening) effect of d-electrons in case of Ga , the valence electrons are attracted more strongly and hence, the size is not increased.

