Foundation for Success

Unified International
Mathematics Olympiad

UNIFIED INTERNATIONAL MATHEMATICS OLYMPIAD (UPDATED)

```
CLASS - 6
    Question Paper Code : UM9264
```

KEY

1	2	3	4	5	6	7	8	9	10
A	B	D	A	B	C	C	B	C	D
11	12	13	14	15	16	17	18	19	20
D	D	C	B	B	D	C	A	B	B
21	22	23	24	25	26	27	28	29	30
B	C	B	C	B	A	A	C	B	C
31	32	33	34	35	36	37	38	39	40
A, B, C, D	B,D	A,B,C	C,D	A, B, C	C	B	D	B	C
41	42	43	44	45	46	47	48	49	50
A	B	C	A	C	A	B	D	C	B

EXPLANATIONS

MATHEMATICS - 1

1. (A) $\quad \frac{0.65 \times 0.65 \times 0.65+0.35 \times 0.35 \times 0.35}{0.65 \times 0.65-0.65 \times 0.35+0.35 \times 0.35}$
$=\frac{0.274625+0.042875}{0.4225-0.2275+0.1225}$
$=\frac{0.3175}{0.3175}=1$
2. (B) $2 \times 3 \times 5 \times 7 \times 11 \times 13 \times \ldots \ldots=30030 \times \ldots$.
\therefore The units digit $=$ zero
3. (D) Given product of two numbers
$=\mathrm{LCM} \times \mathrm{HCF}$
$\Rightarrow 264 \times$ other number $=1320 \times 12$
\therefore Other number $=\frac{1320 \times 12}{264}=60$
4. (A) Greatest 5 digit number $=99,999$

Greatest 4 digit number $=9,999$
\therefore Number of 5 digit numbers
$=99,999-9,999=90,000$
05. (B) $\mathrm{LHS}=\frac{-1.11 \times-1.11+3.57 \times 3.57}{1.5129+5.4756}$
$=\frac{1.2321+12.7449}{6.9885}$
$=\frac{13.977}{6.9885}=2$
06. (C) Given $\mathrm{A}: \mathrm{B}=6: 5$ \& $\mathrm{B}: \mathrm{C}=4: 1$

LCM of B ratios $=20$
$\therefore \mathrm{A}: \mathrm{B}=6 \times 4: 5 \times 4=24: 20$
$B: C=4 \times 5: 1 \times 5=20: 5$
$\therefore A: B: C=24: 20: 5 \Rightarrow A: C=24: 5$
07. (C) Area of rectangle
$=l \mathrm{~b}=47 \frac{2}{3} \mathrm{~cm} \times 11 \frac{2}{11} \mathrm{~cm}$
$=\frac{143}{3} \times \frac{123}{11} \mathrm{~cm}^{2}$
$=533 \mathrm{~cm}^{2}$
08. (B) A rectangle has two lines of symmetry.

09. (C) Let $x=19$, then LHS of Option A

$$
=\frac{21}{3}-\frac{18}{5}=\frac{35-18}{5}=\frac{17}{5}
$$

RHS of Option $A=\frac{22}{4}-1=\frac{11}{2}-1=\frac{9}{2}$
Let $x=19$ the LHS of Option B
$=\frac{21}{3}-\frac{20}{5}=3$
RHS of Option $B=\frac{22}{4}+1=\frac{13}{2}$
LHS of Option B \neq RHS of Option B Let $x=19$, the LHS of Option C $=3$

RHS of Option $C=\frac{19-3}{4}-1=\frac{16}{4}-1=3$
\therefore LHS of Option C $=$ RHS of Option C
10. (D) Perimeter of a triangle
$=\frac{a}{2}+\frac{b}{3}-\frac{c}{4}+\frac{a}{4}-\frac{b}{3}-\frac{c}{2}+\frac{a}{3}-\frac{b}{4}+\frac{c}{3}$
$=\frac{a}{2}+\frac{a}{4}+\frac{a}{3}-\frac{b}{4}-\frac{c}{4}-\frac{c}{2}+\frac{c}{3}$
$=\frac{6 a+3 a+4 a}{12}-\frac{b}{4}-\frac{3 c-6 c+4 c}{12}$
$\Rightarrow \frac{13 \mathrm{a}}{12}-\frac{\mathrm{b}}{4}-\frac{5 \mathrm{c}}{12} \Rightarrow \frac{13 \mathrm{a}-3 \mathrm{~b}-5 \mathrm{c}}{12} \mathrm{~cm}$
11. (D) $3: 4=\frac{3}{4}, 5: 8=\frac{5}{8}$,
$11: 12=\frac{11}{12}, 15: 16=\frac{15}{16}$
\therefore LCM of denominators $=48$
$\therefore \frac{3}{4}=\frac{3}{4} \times \frac{12}{12}=\frac{36}{48}$
$\frac{5}{8}=\frac{5}{8} \times \frac{6}{6}=\frac{30}{48}$
$\frac{11}{12}=\frac{11}{12} \times \frac{4}{4}=\frac{44}{48}$
$\frac{15}{16}=\frac{15}{16} \times \frac{3}{3}=\frac{45}{48}$
$\therefore \frac{45}{48}>\frac{44}{48}>\frac{30}{48}>\frac{36}{48}$
$\therefore \frac{45}{48}$ is greatest $\Rightarrow 15: 16$ is greatest.
12. (D) 320 is divisible by 8
$\therefore 2345678987654320$ is divisible by 8
$\therefore 2345678987654325$
$=2345678987654320+5$
\therefore Remainder $=5$
13. (C) The possible fractions can be
$\frac{1}{9}, \frac{2}{8}, \frac{3}{7}, \frac{4}{6}, \frac{5}{5}, \frac{6}{4}, \frac{7}{3}, \frac{8}{2}$
Among $\frac{3}{7}$ satisfies the given condition
of $\frac{3+3}{7-1}=\frac{6}{6}=1$
$\therefore 7-3=4$
14. (B) LCM of $3,5,6,8,10 \& 12=120$

Required number $=120 x+2$
Given $(120 x+2)$ is divisible by 13
$\therefore \quad 962$ is in the form of $120 x+2$ and divisible by 13 also
15. (B) Given $(1+2+3+\ldots \ldots+50)+(46+47+$ +99) $=1275+3915$
$\therefore 1+2+3+$.. $+50+(46+47+48+49$
$+50)+(51+$ $+99)=5190$
$\therefore 1+2+3+$ $+50+240+51+52$
$+. . . .+99=5190$
$\therefore 1+2+3+$ \qquad $+99=5190-240=4950$
16. (D) No property is satisfied by the division operation
17. (C) The required numbers are $18 \& 8$ because $18 \times 8=144 \& 18+8=26$
\therefore larger number $=18$
18. (A) Smallest odd composite number $=9$
$\therefore 41+\mathrm{P}$ is divisible by 9
$\therefore 45$ is divisible by 9
$\therefore 41+P=45$
$P=4$
19. (B) Age of Ram $=60 y-5 y=55 y$

Age of Raju $=55 y-4 y=51$ year
Age of Babu $=51 y-6 y=45$ years
Age difference between Mahesh \& Babu $=60 y-45 y=15 y$
20. (B) Prime numbers between 1 and 50 are $2,3,5,7,11,13,17,19,23,29,31,37,41,43,47$
$\therefore \mathrm{m}=15$
Prime numbers between 50 and 100 are 53, 59, 61, 67, 71, 73, 79, 83, 89, 97
$\therefore \mathrm{n}=10$
$\therefore \mathrm{m}-\mathrm{n}=15-10=5$
21. (B) 997 is the greatest 3 digit prime number
22. (C) $42=6 \times 7 \& 78=6 \times 13$
$\therefore \quad$ First number $=7$, second number $=6$, third number $=13$

Product of this three numbers
$=6 \times 7 \times 13=546$
23. (B) $3 \frac{2}{3}+7 \frac{3}{5}-8 \frac{7}{10}-2 \frac{11}{15}$
$=\frac{11}{3}+\frac{38}{5}-\frac{87}{10}-\frac{41}{15}$
$=\frac{110+228-261-82}{30}$
$=\frac{-5}{30}=\frac{-1}{6}$
24. (C) $7 x^{2}+5 x y-9 y^{2}-4 x^{2}-7 x y+5 y^{2}+4 y^{2}-$
$3 x^{2}-6 x y$
$=7 x^{2}-4 x^{2}-3 x^{2}-9 y^{2}+5 y^{2}+4 y^{2}+5 x y-$
$7 x y-6 x y$
$=7 x^{2}-7 x^{2}-9 y^{2}+9 y^{2}-2 x y-6 x y$
$=7 x^{2}-7 x^{2}-9 y^{2}+9 y^{2}-2 x y-6 x y$
$=-8 x y$
25. (B) Given the ratio of $A \& B$
$\frac{5}{4}: \frac{5}{3}=\frac{5}{4} \times 12: \frac{5}{3} \times 12$
$=5 \times 3: 5 \times 4$
$=3: 4=3 x: 4 x$
\therefore A's amount $=₹ 3 x$ \& B's amount $=₹ 4 x$
Given $3 x=₹ 36,774$
$x=\frac{\text { ₹ } 36,774}{3}=12,258$
\therefore Total money $=₹(3 x+4 x)=₹ 7 x$
$=₹ 7 \times 12,258=₹ 85,806$
26. (A) Let $a=5 \in z \& b=10 \in z$ then
$a-b=5-10=-5 \in z$
\therefore Subtraction of integers follow closure property
27. (A) $C D X X V I I I=428, C D X X I I I=423, C C C X L I I I=$ 343, CCCII $=302$
\therefore Option ' A ' is in descending order
28. (C) Dividend $=$ Divisor \times quotient + Remainder
$10,00,000=$ divisor $\times 999+1$
\therefore Divisor $\times 999$
$=10,00,000-1=9,99,999$
\therefore Divisor $=\frac{9,99,999}{999}=1001$
29. (B) The result is having more than 51 factors
\therefore It is a composite number It is even number
30. (C)

$$
\begin{aligned}
& \text { 247) } 416(1 \\
& \frac{247}{169)} 247(1 \\
& \frac{169}{78)} 169(2 \\
& \frac{156}{13)} 78(6 \\
& \frac{78}{(0)}
\end{aligned}
$$

13) $663(51$
$\frac{65}{13}$
13
(0)
$\mathrm{HCF}=13$
13

$247,416,663$
$19,32,51$

\therefore LCM $=13 \times 19 \times 32 \times 51$
$=4,03,104$
\therefore LCM + HCF $=4,03,104+13=4,03,117$

MATHEMATICS - 2

31. (A, B, C, D)

Sum of odd place numbers $=5+8+3+7$
$+9+6+4=42$
Sum of even place numbers
$=4+9+6+8+7+5+3=42$
\therefore The difference of their sums
$=42-42=0$
Given number is divisible by 11
Option B:
$7+5+3+8+6+4+9=42$
$5+8+3+7+9+6+4=42$
\therefore Option ' B ' is divisible by 11
Similarly option'C' \& option ' D ' are also divisible by 11
32. (B, D)

LCM of $48,32,16,24 \& 12=96$
$\therefore \frac{-19}{48}=\frac{-38}{96}, \frac{-17}{32}=\frac{-51}{96}$,
$\frac{-7}{16}=\frac{-42}{96}, \frac{-13}{24}=\frac{-52}{96}, \frac{-5}{12}=\frac{-40}{96}$
$\frac{-52}{96}<\frac{-51}{96}<\frac{-42}{96}<\frac{-40}{96}<\frac{-38}{96}$
i.e., $\frac{-13}{24}<\frac{-17}{32}<\frac{-7}{16}<\frac{-5}{12}<\frac{-19}{48}$

LCM of $36,24,9,6$ and $4=72$
$\frac{-23}{36}=\frac{-46}{72}, \frac{-17}{24}=\frac{-51}{72}, \frac{-7}{9}=\frac{-56}{72}, \frac{-3}{4}=\frac{-54}{72}$
$\frac{-5}{6}=\frac{-60}{72}$
\therefore Ascending order is
$\frac{-60}{72}<\frac{-56}{72}<\frac{-54}{72}<\frac{-51}{72}<\frac{-46}{72}$
i.e., $\frac{-5}{6}<\frac{-7}{9}<\frac{-3}{4}<\frac{-17}{24}<\frac{-23}{36}$
33. (A, B, C)

Option ' A ' is true because $2+3=5$
Option ' B ' is true because $5+7+11=23$
which is an odd number
Option 'C' is true because
$3 \times 5 \times 11=165$ which is an odd number
Option ' D ' is false because
$2 \times 5 \times 11=110$ which is even number
34. (C, D) Asquare and rhombus have equal sides
35. (A, B, C) Options A, B \& C are true

REASONING
36. (C)

37. (B)

38. (D) \star moves one step clockwise direction - moves opposite side.

39. (B)

40. (C) Except option (C) remaining options are equal size triangles.

41. (A) $9=3 \times 3$
$15=3 \times 5$
$21=3 \times \underline{7}$
$7=9-2$
$7=12-5$
$7=20-\underline{13}$
$4=2 \times 2$
$16=2 \times 8$
$24=2 \times \underline{12}$
(C)
$A+B+C=7+13+12 \Rightarrow 32$

42. (B)

43. (C) Among the options MOTOR is formed from the given word.
44. (A) The folded transparent sheet will appear as

45. (C) From the table, we find that Harsh is neither hardworking nor ambitious.

	Intelligent	Hard working	Honest	Ambitious
Kiran	\checkmark	\checkmark	x	\checkmark
Gopal	\checkmark	x	X	\checkmark
Harsha	\checkmark	X	\checkmark	X
Raghu	X	\checkmark	\checkmark	X
Jitendra	x	\checkmark	\checkmark	\checkmark

Hence, option (C) is correct.

CRITICAL THINKING

46. (A) Underneath the shelf well that one is a lot more shallower on B so therefore the correct answer is shelf A will definitely break first.
47. (B) From statement 2 alone we can get to know who lives in which state. A - Assam, B - Bihar.
D and E are already given, so only C is left out who will be living in Kashmir.

48. (C) Because 'Heroism' means great bravery and Synonyms is Courage.
49. (B) \square
