Foundation for success

Unified International
Mathematics Olympiad

UNIFIED INTERNATIONAL MATHEMATICS OLYMPIAD (UPDATED)

CLASS - 6
 Question Paper Code : UM9269

KEY

1	2	3	4	5	6	7	8	9	10
B	D	C	C	C	C	B	B	C	B
11	12	13	14	15	16	17	18	19	20
C	C	A	C	C	A	D	A	B	D
21	22	23	24	25	26	27	28	29	30
D	A	B	A	C	A	B	B	A	B
31	32	33	34	35	36	37	38	39	40
$\mathrm{~A}, \mathrm{C}, \mathrm{D}$	$\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$	$\mathrm{A}, \mathrm{C}, \mathrm{D}$	$\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$	$\mathrm{A}, \mathrm{B}, \mathrm{C}$	B	C	C	D	B
41	42	43	44	45	46	47	48	49	50
B	C	A	C	D	A	C	B	B	D

EXPLANATIONS

MATHEMATICS - 1

1. (B) LHS $=\frac{18}{5} \times \frac{18}{5}-2 \times \frac{18}{5} \times \frac{3}{5}+\frac{9}{25}$

$$
\begin{aligned}
& =\frac{324-108+9}{25} \\
& =\frac{225}{25}=9
\end{aligned}
$$

2. (D) $\mathrm{LHS}=\left(5 x^{2}-\frac{x^{2}}{2}-2 x^{2}\right)+\left(-\frac{x}{3}+\frac{x}{2}+\frac{x}{5}\right)$

$$
\begin{aligned}
& +\left(\frac{5}{2}-\frac{1}{3}-\frac{1}{6}\right) \\
& =\left(\frac{10 x^{2}-x^{2}-4 x^{2}}{2}\right)+\left(\frac{-10 x+15 x+6 x}{30}\right) \\
& +\left(\frac{15-2-1}{6}\right) \\
& =\left(\frac{5 x^{2}}{2}+\frac{11 x}{30}+2\right)
\end{aligned}
$$

3. (C) Perimeter of the garden $=2(1+b)$
$=2(102.5+75.5) \mathrm{m}$
$=356$ meter
Length of the required
$=5 \times 356 \mathrm{~m}=1780$ metre
\therefore Total cost for barbed wire
= $1780 \times ₹ 22.5$ = ₹ 40,050
4. (C) Saving for 3 weeks $=₹ 21 x$

Expendature for 3 weeks $=₹ 3 y$
\therefore Total income for 3 weeks
$=₹ 21 x+₹ 3 y=₹ 3(7 x+y)$
05. (C) Given triangle perimeter
$=17 \mathrm{~cm}+20 \mathrm{~cm}+23 \mathrm{~cm}=60 \mathrm{~cm}$
Perimeter of option ' A ' triangle
$=19 \mathrm{~cm}+20 \mathrm{~cm}+25 \mathrm{~cm}=64 \mathrm{~cm}$
Perimeter of option ' B ' square
$=4 \times 14 \mathrm{~cm}=56 \mathrm{~cm}$
Perimeter of option ' C ' rectangle
$=2(17.5+12.5) \mathrm{cm}=2 \times 30=60 \mathrm{~cm}$
Perimeter of option ' D ' triangle
$=3 \times 18 \mathrm{~cm}=54 \mathrm{~cm}$
06. (C) LHS $=-1-(-1)-(-1)-(-1)-(-1)$
$-(-1)-(-1)$
$=-1+1+1+1+1+1+1$
$=5$
07. (B) LHS $=\frac{3 \times 5+1}{16}+\frac{2 \times 5-3}{7}=\frac{16}{16}+\frac{7}{7}=2$

RHS $=\frac{5+3}{8}+\frac{5-1}{4}=\frac{8}{8}+\frac{4}{4}=2$
$\therefore x=5$ is the solution of option ' B '
08. (B) Required number
$=$ LCM of $24,32,36 \& 54-5$
$=864-5=859$
09. (C) Required quotient
$=\frac{\text { Dividend }- \text { Quotient }}{\text { Divisor }}$
$=\frac{5333348-1234}{4321}$
$=\frac{5332114}{4321}=1234$
10. (B) $\frac{1}{105}$ and $\frac{2}{105}$ are the factors of the given fractions (OR)
$\therefore \quad \frac{2}{105}$ is the heighest common factor of the given fractions.
HCF of the fractions
$=\frac{\text { HCF of numerator }}{\text { LCM of denominator }}=\frac{2}{105}$
11. (C) Sum of 5 sides $=1$ metre $=100 \mathrm{~cm}$
$\therefore \quad$ Length of each side $=\frac{100 \mathrm{~cm}}{5}=20 \mathrm{~cm}$
12. (C) LHS $=\frac{24}{5}-\frac{1}{2} \div \frac{5}{4}+\frac{3}{5} \times \frac{25}{6}-\frac{733}{30}$
$=\frac{24}{5}-\frac{1}{2} \times \frac{4}{5}+\frac{5}{2}-\frac{733}{30}$
$=\frac{144-12+75+-733}{30}$
$=\frac{-526}{30}=-17 \frac{8}{15}$
13. (A) Cost of one pen $=\frac{₹ 432}{12}=₹ 36$

Cost of one book $=\frac{\text { ₹ } 756}{9}=₹ 84$
The ratio of cost of book \& pen
= ₹ 84 : ₹ 36
= 7 : 3
14. (C) $542.75 \times 542.75+2 \times 542.75 \times 457.25+$ 457.25×457.25
$=2,94,577.5625+4,96,344.875+$
2,09,077.5625
$=10,00,000$
15. (C) Given $1+2+3+4+\ldots .+100=5050$

Given $96+97+98+99+100+101+\ldots$
$+200=15,540$
$=490+101+102+103+\ldots . .+200$
$=15,540$
$\therefore 101+102+103+\ldots . .+200$
$=15540-490$
$101+102+103+$ \qquad $+200=15050$
$\therefore 1+2+3+\ldots \ldots+100+101+102+\ldots$
$+200=5050+15050=20100$
16. (A) $C C X+C C X L I X=210+249=459=$ CDLIX
17. (D) There are 1000 integers between
-1000 and 1
Between zero and 100 there are 99 integers
\therefore Total integers between -1000 to 100
$=1000+99=1099$
18. (A) Perimeter $=2(l+b)$
$=2(50+35) \mathrm{cm}=170 \mathrm{~cm}$
\therefore The ratio of length and perimeter
$=50 \mathrm{~cm}$: 170 cm
= $5: 17$
19. (B) Number of edges of base
$=\frac{\text { Total edges }}{2}=\frac{10}{2}=5$
$\therefore \quad$ Required pyramid base shape $=$ Pentagon
20. (D) Let the possible numbers are

18, 24, 42, 81
If $18+63=81$
$\therefore \quad 18$ is the required number
$\therefore \quad$ Sum of the digits $=1+8=9$
21. (D) The line segments are $A B, A C, A D, A E, A F$, $B C, B D, B E, B F, C D, C E, C F, D E, D F, \& E F$
$\therefore \quad$ Total line segment $=15$
22. (A) Number of flowers in the basket
$=18 \times 8=144$
23. (B) 98760 is the required number which is having 5 different digits and divisible by 8
24. (A) Zero is the additive identity of whole numbers
25. (C) Smallest prime number between 20 and $29=23$

Greatest composite number between 20 and $29=28$
$\therefore \quad$ Required product $=23 \times 28=644$
26. (A) LHS

$$
\begin{aligned}
& =\frac{5.29 \times 2.3+11.56 \times 3.4+18.49 \times 4.3-100.878}{5.29+11.56+18.49-7.82-14.62-9.89} \\
& =\frac{12.167+39.304+79.507-100.878}{3.01} \\
& =\frac{30.1}{3.01} \times \frac{10}{10}=\frac{30.1}{30.1} \times 10=10
\end{aligned}
$$

27. (B) Let the length \& breadth of the rectangle be $l \& b$

Given $\mathrm{L}=2 l \& B=2 \mathrm{~b}$
$\therefore \quad$ New rectangle area $=L B=4 l \mathrm{~b}$
Difference $=4 l \mathrm{~b}-l \mathrm{~b}=3 l \mathrm{~b}$
28. (B) Given the ratio of copper and zink $=5: 7=5 x: 8 x$

Given $5 x=105 \mathrm{~g}$
$x=\frac{105}{5}=21 \mathrm{~g}$
$\therefore \quad$ Weight of the alloy
$=5 x+8 x=13 x=13 \times 21 \mathrm{~g}$
$=273 \mathrm{~g}$
29. (A)

30. (B) $\angle \mathrm{AOB}=\angle \mathrm{BOC}-\angle \mathrm{AOC}$
$=153^{\circ}-90^{\circ}=63^{\circ}$

MATHEMATICS - 2

31. (A, C, D)

Present age of Karthik may be 15 years, (or) 50 years (or) 85 years.
If his present age is 15 years then after
$89-15=74$ years
He will be 89 years
If his present age is 50 years then after
$89-50=39$ years
He will be 89 years
If his present age is 85 years then after
$89-85=4$ years
He will be 89 years
32. (A, B, C, D)

Sum of the digits $=1+2+3+4+5+6+7+8$ $+9+1+5+3+4+8+6+9+7+8+7+5=108$ which is divisible by $9 \& 3$.
\therefore Given number is divisible by $3 \& 9$
Given number units place is $5 \Rightarrow \mathrm{It}$ is divisible by 5

Given number last two digits are divisible by 25
Sum of odd place numbers $=5+8+9+8+3+$ $1+8+6+4+2=54$

Sum of even place numbers $=7+7+6+4+5+$ $9+7+5+3+1=54$
Difference of this sum $=54-54=0 \Rightarrow$ Given number is divisible by 11
\therefore Given numbe is divisible by $11 \times 5=55$
Given number is divisible by 25
Given number is divisible by $3 \times 5=15$
Given number is divisible by $9 \times 5=45$
33. (A, C, D)

Option ' A ' :
LCM of $8,4,32$ and 16 is 32
$\therefore \frac{-7}{8}=\frac{-28}{32}, \frac{-3}{4}=\frac{-24}{32}, \frac{-11}{16}=\frac{-22}{32}$
$\therefore \frac{-28}{38}<\frac{-24}{32}<\frac{-23}{32}<\frac{-22}{32}$
\therefore Option ' A ' is in the ascending order.

Option ' B^{\prime} :
LCM of $5,30,10$ and 15 is 30
$\therefore \frac{-2}{5}=\frac{-12}{30}, \frac{-7}{10}=\frac{-21}{30}, \frac{-11}{15}=\frac{-22}{30}$
$\therefore \frac{-12}{30}>\frac{-17}{30}>\frac{-21}{30}>\frac{-22}{30}$
\therefore Option ' B ' is in the descending order Option ' C ' :
LCM of $21,42,7$ and 14 is 42
$\therefore \frac{-17}{21}=\frac{-34}{42}, \frac{-5}{7}=\frac{-30}{42}, \frac{-9}{14}=\frac{-27}{42}$
$\therefore \frac{-34}{42}<\frac{-31}{42}<\frac{-30}{42}<\frac{-27}{42}$
\therefore Option ' C ' is in ascending order
Option ' D^{\prime} :
LCM of $6,3,18$ and 19 is 18
$\frac{-5}{6}=\frac{-15}{18}, \frac{-2}{3}=\frac{-12}{18}, \frac{7}{9}=\frac{14}{18}$
$\therefore \frac{-15}{18}<\frac{-12}{18}<\frac{-11}{18}<\frac{14}{18}$
\therefore Option ' D ' is in ascending order
34. (A, B, C, D)
$\frac{1}{2}+\frac{1}{3}+\frac{1}{6}=\frac{3+2+1}{6}=\frac{6}{6}=1$
$2-2+1=1$
$31.7-36.6+5.9=37.6-36.6=1$
$\frac{-3}{2}-\frac{5}{2}+5=\frac{-3-5+10}{2}=\frac{2}{2}=1$
35. (A, B, C)

Options A, B and C are true.

REASONING

36. (B) Every time the difference between two letters increased by 2, 3, 4, 5, 6 letters respectively.
$\frac{B C D E F G H I J K L M N}{2} \frac{\text { OPQRSTUVWXYZA }}{5}$
37. (C) Except $3^{\text {rd }}$ image remaining images have same number of sides inner and outer shape.
38. (C) Second shape in Every pair is a combination of a letter and its vertical, horizontal flip the letter.

39. (D)

ABC, ACM, MCG, GCN, NCB, ACG, ACN, MCN, MCB, GCB, DEF, GDH, GDI, JKI, ILB, MFG, NKB, BCD, ABD, DHC, DEC, CJL, CEH, CDE, CDH, CDK
40. (B) The arrow pointing down represents $\mathrm{T}, 2$ triangles represents S .
41. (B) $9+4 \div 2 \times 17-16=27$
$9+2 \times 17-16=27$
$9+34-16=27$
$9+18=27$ (Correct)
42. (C)

43. (A) Bicycle, Bifocal , Bishop, Bitter
44. (C)

45. (D) The numbers arranged in descending order are 4, 3, 2, 1 .

Now since $1^{\text {st }}$ and $3^{\text {rd }}$ cards have been interchanged, $3^{\text {rd }}$ card would be the one which is now in the first place which is 4 .
46. (A) First option says that students are obedient and that some children are students. Therefore some children which are students will be obedient.

47. (C) From 2nd scale 1 triangle $=5$ squares

2 hexagons $=6$ squares
1 hexagon = 3 squares
3 hexagons $=9$ squares
2 triangles $=10$ squares
Hence, 1 square is need to balance the $3^{\text {rd }}$ scale.
48. (B) Statement 3 and 4 that together prove the given sentence is correct.
49. (B) The diameter of the left wheel is less than right wheel, with 1 rotation of right wheel results more rotation (speed) of left wheel. So, (B) is the right answer.
50. (D) Use a tree diagram to list each path. To simplify the listing, the midle row uses lower case letters and the top row uses circled italicized letters in a different font. Trace each path that starts at C and leads to L.

There are 9 paths that trace her name.

