Foundation for Success

Unified International
Mathematics Olympiad

UNIFIED INTERNATIONAL MATHEMATICS OLYMPIAD (UPDATED)

CLASS - 7
 Question Paper Code : UM9269

KEY

1	2	3	4	5	6	7	8	9	10
A	C	C	D	A	C	B	C	A	C
11	12	13	14	15	16	17	18	19	20
C	A	D	C	B	B	C	D	A	D
21	22	23	24	25	26	27	28	29	30
C	A	D	A	B	D	B	C	A	C
31	32	33	34	35	36	37	38	39	40
B, C	A, C, D	A, C, D	A, B, D	A, B, C, D	A	C	D	A	A
41	42	43	44	45	46	47	48	49	50
D	C	A	C	B	D	A	C	A	C

EXPLANATIONS

MATHEMATICS - 1

1. (A) Given $\mathrm{S}_{1}+\mathrm{S}_{2}+\mathrm{S}_{3}=3322$ units Given $S_{1}-S_{2}+S_{3}=2022$ units
$\therefore\left(\mathrm{S}_{1}+\mathrm{S}_{2}+\mathrm{S}_{3}\right)-\left(\mathrm{S}_{1}-\mathrm{S}_{2}+\mathrm{S}_{3}\right)$
$=(3322-2022)$ units
$\Rightarrow \mathrm{S}_{1}+\mathrm{S}_{2}+\mathrm{S}_{3}-\mathrm{S}_{1}+\mathrm{S}_{2}-\mathrm{S}_{3}=1300$ units
$\Rightarrow 2 \mathrm{~S}_{2}=1300$ units
$S_{2}=\frac{1300}{2}$ units $=650$ units
2. (C) $\frac{1}{1+2^{a-b}}+\frac{1}{1+2^{b-a}}$
$=\frac{1}{1+\left(\frac{2^{a}}{2^{b}}\right)}+\frac{1}{1+\left(\frac{2^{b}}{2^{a}}\right)}$
$=\frac{1}{\left(\frac{2^{a}+2^{b}}{2^{b}}\right)}+\frac{1}{\left(\frac{2^{a}+2^{b}}{2^{a}}\right)}$
$=\frac{2^{b}}{2^{a}+2^{b}}+\frac{2^{a}}{2^{a}+2^{b}}=\frac{\left(2^{a}+2^{b}\right)}{\left(2^{a}+2^{b}\right)}=1$
3. (C) In an isosceles triangle equal sides opposite angles are equal
$\Rightarrow \angle B=\angle C=60^{\circ}$
But $\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
$\angle A+60^{\circ}+60^{\circ}=180^{\circ}$
$\angle A=180^{\circ}-120^{\circ}=60^{\circ}$
4. (D) Let the first number be ' x '
\therefore other number $=10 x$
Given $10 x+x=3531$
$11 x=3531$
$x=\frac{3531}{11}=321$
$\therefore \quad$ Difference of numbers $=10 x-x=9 x$
$=9 \times 321=2889$
5. (A)

$\therefore \quad A C=(4+4+5+3) \mathrm{cm}=16 \mathrm{~cm}$
$B C=(3+4+5) \mathrm{cm}=12 \mathrm{~cm}$
In $\triangle A B C, \angle C=90^{\circ} \Rightarrow A B^{2}=A C^{2}+B C^{2}$
(\because pythagurus theorem)
$=(16 \mathrm{~cm})^{2}+(12 \mathrm{~cm})^{2}$
$=(256+144) \mathrm{cm}^{2}$
$=400 \mathrm{~cm}^{2}$
$A B^{2}=(20 \mathrm{~cm})^{2}$
$\therefore A B=20 \mathrm{~cm}$
6. (C)

2	$2^{3} \times 3^{2} \times 5^{2} \times 7,2 \times 5^{2} \times 7^{3}$
5^{2}	$2^{2} \times 3^{2} \times 5^{2} \times 7,5^{2} \times 7^{3}$
7	$2^{2} \times 3^{2} \times 7,7^{3}$
	$2^{2} \times 3^{2}, 7^{2}$

$\therefore \mathrm{LCM}=2 \times 5^{2} \times 7 \times 2^{2} \times 3^{2} \times 7^{2}$
$=2^{3} \times 3^{2} \times 5^{2} \times 7^{3}$
07. (B) The areas ratio of two squares $P \& Q$
$=4: 9$
$=4 x^{2}: 9 x^{2}$
Given $4 x^{2}+9 x^{2}=468 \mathrm{~cm}^{2}$
$13 x^{2}=468 \mathrm{~cm}^{2}$
$x^{2}=\frac{468 \mathrm{~cm}^{2}}{13}=36 \mathrm{~cm}^{2}$
$x^{2}=(6 \mathrm{~cm})^{2}$
$x=6 \mathrm{~cm}$
\therefore Area of square Q
$=9 x^{2}=9 \times 36 \mathrm{~cm}^{2}=324 \mathrm{~cm}^{2}$
$a^{2}=(18 \mathrm{~cm})^{2}$
$a=18 \mathrm{~cm}$
Perimeter of square \mathbf{Q}
$=4 \mathrm{a}=4 \times 18 \mathrm{~cm}=72 \mathrm{~cm}$
08. (C) Given $A B C D$ is a quadrilateral
$\therefore \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{BCD}+\angle \mathrm{D}=360^{\circ}$
$70^{\circ}+60^{\circ}+\angle B C D+120^{\circ}=360^{\circ}$
$\angle B C D=360^{\circ}-250^{\circ}=110^{\circ}$
But $\angle \mathrm{BCD}+\angle \mathrm{DCE}=180^{\circ}$
$110^{\circ}+\angle \mathrm{DCE}=180^{\circ}$
$\angle D C E=180^{\circ}-110^{\circ}=70^{\circ}$
09. (A) Given $x^{x^{\frac{3}{2}}}=x^{x \times \frac{3}{2}}$
$\therefore x^{\frac{3}{2}}=x \times \frac{3}{2}$
$\frac{x^{\frac{3}{2}}}{x}=\frac{3}{2}$
$x^{\frac{3}{2}-1}=\frac{3}{2}$
$x^{\frac{1}{2}}=\frac{3}{2}$
10. (C) Sum of three consecutive numbers
$=1+2+3$
$=2-1+2+2+1$
$=2 \times 3=6$
$=$ Middle number $\times 3$
Similarly sum of 29 consecutive numbers $=29 \times$ middle number
$=29 \times 50=1450$
11. (C) If $a=83^{\circ}$ then $b=7^{\circ}$ both are prime numbers
$\therefore \quad$ Least value of $b=7^{\circ}$
12. (A) $\left(\frac{a-3}{5-c}\right)\left(\frac{b-4}{3-a}\right)\left(\frac{c-5}{4-b}\right)$
$=\left(\frac{a-3}{-c+5}\right)\left(\frac{b-4}{-a+3}\right)\left(\frac{c-5}{-b+4}\right)$
$=-1\left(\frac{a-3}{c-5}\right) \times-1\left(\frac{b-4}{a-3}\right) \times-1\left(\frac{c-5}{b-4}\right)$
$=-1\left[\frac{a-3}{c-5} \times \frac{b-4}{a-3} \times \frac{c-5}{b-4}\right]$
$=-1$
13. (D) Given $2 \pi r=4 s$
$2 \times \frac{22}{7} r=4 s$
$\Rightarrow r=4 s \times \frac{7}{22} \times \frac{1}{2}$
$r=\frac{7 s}{11}$
Areas ratio of circle \& square
$=\pi r^{2}: s^{2}$
$=\frac{22}{7} \times\left(\frac{7 \mathrm{~s}}{11}\right)^{2}: \mathrm{s}^{2}$
$=\frac{22}{7} \times \frac{49 \mathrm{~s}^{2}}{121}: \mathrm{s}^{2}$
$=\frac{14 s^{2}}{11} \times 11: s^{2} \times 11$
$=14: 11$
14. (C) We have,

$$
\begin{aligned}
& \left(\frac{12}{5} x^{2} y z-\frac{3}{5} x y z+\frac{2}{3} x^{2} y\right)-\left(\frac{3}{2} x^{2} y+\frac{4}{5} y-\frac{1}{3} x^{2} y z\right) \\
& \quad=\frac{12}{5} x^{2} y z-\frac{3}{5} x y z+\frac{2}{3} x^{2} y-\frac{3}{2} x^{2} y-\frac{4}{5} y+\frac{1}{3} x^{2} y z \\
& \quad=\frac{12}{5} x^{2} y z+\frac{1}{3} x^{2} y z+\frac{2}{3} x^{2} y-\frac{3}{2} x^{2} y-\frac{3}{5} x y z-\frac{4}{5} y
\end{aligned}
$$

[Grouping line terms]

$$
\begin{aligned}
& =\left(\frac{12}{5}+\frac{1}{3}\right) x^{2} y z+\left(\frac{2}{3}-\frac{3}{2}\right) x^{2} y-\frac{3}{5} x y z-\frac{4}{5} y \\
& =\frac{41}{15} x^{2} y z-\frac{5}{6} x^{2} y-\frac{3}{5} x y z-\frac{4}{5} y
\end{aligned}
$$

15. (B) $9 a^{3} b^{2} c=3 \times 3 \times a \times a \times a \times b \times b \times c$ $12 a^{2} b^{2} d=2 \times 2 \times 3 \times a \times a \times b \times b \times d$ $15 a b^{3} c d=3 \times 5 \times a \times b \times b \times b \times c \times d$
$\therefore \quad \mathrm{HCF}=3 \times \mathrm{a} \times \mathrm{b}^{2}=3 \mathrm{ab}^{2}$
$\left[\because 3 a b^{2}\right.$ is the highest common factor of the given terms]
16. (B) Given $\frac{x}{y}=\frac{3}{4}$
$\therefore x=\frac{3 y}{4}$

$$
\begin{aligned}
& \frac{8 x-15 y}{8 x+5 y}=\frac{8 \times \frac{3 y}{4}-15 y}{8 \times \frac{3 y}{4}+5 y} \\
& =\frac{6 y-15 y}{6 y+5 y} \\
& =\frac{-9 y}{11 y}=\frac{-9}{11}
\end{aligned}
$$

17. (C)
$\frac{\frac{8}{7}+\frac{2}{5}-\left[\frac{\frac{5}{3}}{\frac{27-2}{9}}\right]}{1-\frac{1}{7}\left[\frac{1}{3}-\frac{\left(\frac{2}{5}\right)}{\frac{5-2}{5}}\right]}=\frac{\frac{8}{7}+\frac{2}{5}-\left[\frac{5}{3} \times \frac{9}{25}\right]}{1-\frac{1}{7}\left[\frac{1}{3}-\frac{2}{5} \times \frac{5}{3}\right]}$
$=\frac{\frac{8}{7}+\frac{2}{5}-\frac{3}{5}}{1-\frac{1}{7}\left[\frac{1}{3}-\frac{2}{3}\right]}$
$=\frac{\frac{40+14-21}{35}}{1-\frac{1}{7}\left(\frac{-1}{3}\right)}$
$=\frac{\frac{33}{35}}{1+\frac{1}{21}}$
$=\frac{33}{35} \times \frac{21}{22}=\frac{9}{10}$
18. (D) Let the total distance travelled by him $=x \mathrm{~km}$

Distance travelled by train $=\frac{5}{8} x \mathrm{~km}$
Distance travelled by bus $=\frac{1}{4} x \mathrm{~km}$
$\therefore \quad$ Total distance travelled by train and bus
in $\mathrm{km}=\frac{5}{8} x+\frac{1}{4} x=\frac{5 x+2 x}{8}=\frac{7 x}{8}$
Remaining distance in $\mathrm{km}=x-\frac{7 x}{8}=\frac{x}{8}$
He travelled this distance by boat
$\therefore \quad$ We are given that, this distance $=15 \mathrm{~km}$
$\therefore \frac{x}{8}=15$ (or) $x=15 \times 8=120$
$\therefore \quad$ Total distance travelled $=120 \mathrm{~km}$
19. (A) Let distance be $x \mathrm{~km}$

Time taken to walk $=\frac{\mathrm{d}}{\mathrm{s}}=\frac{x}{4}$ hour
Time taken to return $=\frac{\mathrm{d}}{\mathrm{s}}=\frac{x}{12}$ hour
Total time $=\frac{x}{4}+\frac{x}{12}=\frac{3 x+x}{12}=\frac{4 x}{12}=\frac{x}{3}$ hour
Given $\frac{x}{3}$ hour $=\frac{10}{3}$ hour
$\therefore x=\frac{10}{3} \times 3$
\therefore Distance $=10 \mathrm{~km}$
Time taken to return $=\frac{d}{12}=\frac{10}{12}$ hour
$=\frac{10}{12} \times 60 \mathrm{~min}=50 \mathrm{~min}$
20. (D)

$$
\begin{aligned}
& \text { LHS }=1+\frac{1}{1+\frac{1}{1+\frac{1}{\left(\frac{3}{2}\right)}}} \\
& =1+\frac{1}{1+\frac{1}{1+\frac{2}{3}}} \\
& =1+\frac{1}{1+\frac{1}{5}}=1+\frac{1}{1+\frac{3}{5}} \\
& =1+\frac{1}{\frac{5+3}{5}}=1+\frac{1}{\left(\frac{8}{5}\right)} \\
& =1+\frac{5}{8} \\
& =\frac{8+5}{8}=\frac{13}{8}
\end{aligned}
$$

21. (C) No. of kilograms of fruits sold during the four hours $=35+26+45+20=126$
22. (A) Let the son's present age be x years. Then the father's age is $(26+x)$ years
In 3 years' time, son's age $=(x+3)$
years and father's age
$=(26+x+3)$ years $=(x+29)$ years
Given that son's age will be one-third the father's age
$\Rightarrow x+3=\frac{1}{3}(x+29)$
$\Rightarrow 3 x+9=x+29$
$\Rightarrow 2 x=20$
$\Rightarrow x=10$
\therefore The present age of son is 10 years
23. (D) Draw PQ \|AB and $C D$

From the figure, $x=20^{\circ}+\left(180^{\circ}-55^{\circ}\right)$ as PQ || AB || CD
$\Rightarrow x=20^{\circ}+125^{\circ}=145^{\circ}$
24. (A) \quad Given $\left(\frac{5}{4}\right)^{-5}\left(\frac{4}{5}\right)^{10}=\left(\frac{5}{4}\right)^{2 x}$

$$
\begin{aligned}
& \left(\frac{5}{4}\right)^{-5}\left(\frac{5}{4}\right)^{-10}=\left(\frac{5}{4}\right)^{2 x} \\
& \left(\frac{5}{4}\right)^{-5+(-10)}=\left(\frac{5}{4}\right)^{2 x}
\end{aligned}
$$

$2 x=-15$
$x=\frac{-15}{2}$
25. (B) Given

$$
\begin{aligned}
& \left(\frac{2 x+7}{5}\right)-\left(\frac{3 x+11}{2}\right)=\left(\frac{2 x+8}{3}\right)-5 \\
\Rightarrow & \frac{6(2 x+7)-15(3 x+11)-10(2 x+8)}{30}=-5
\end{aligned}
$$

$\therefore 12 x+42-45 x-165-20 x-80=-5 \times 30$
$-53 x-203=-150$
$-53 x=-153+203$
$-53 x=53$
$\therefore x=\frac{53}{-53}=-1$
$x=-1$
26. (D) Given in $\triangle \mathrm{ABC}, \angle \mathrm{A}-\angle \mathrm{B}=30^{\circ}$
$\therefore \angle \mathrm{A}-30^{\circ}=\angle \mathrm{B} \& \angle \mathrm{~A}-\angle \mathrm{C}=24^{\circ}$
$\therefore \angle \mathrm{A}-24^{\circ}=\angle \mathrm{C}$
But $\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
$\angle \mathrm{A}+\angle \mathrm{A}-30^{\circ}+\angle \mathrm{A}-24^{\circ}=180^{\circ}$
$3 \angle \mathrm{~A}-54^{\circ}=180^{\circ}$
$3 \angle \mathrm{~A}=180^{\circ}+54^{\circ}=234^{\circ}$
$\angle \mathrm{A}=\frac{234^{\circ}}{3}=78^{\circ}$
But $78^{\circ}-\angle \mathrm{B}=30^{\circ}$
$\therefore 78^{\circ}-30^{\circ}=\angle B$
$\angle B=48^{\circ}$
27. (B) Let the number to be multiplied be ' x ' Given $3^{-5} \times x=4^{-1}$
$\frac{x}{\left(3^{5}\right)}=\frac{1}{4}$
$x=\frac{3^{5}}{4}=\frac{243}{4}=60 \frac{3}{4}$
28. (C)

Position I:

Position II :

Area of the square $=(4 \mathrm{~cm})^{2}=16 \mathrm{~cm}^{2}$
29. (A) $987^{2}-2 \times 987 \times 990+990^{2}$
$=974169-1954260+980100$
= 1954269 - 1954260
= 9
30. (C) LCM of $2,7,14,28=28$

$$
\begin{aligned}
& \therefore \frac{-5}{14}=\frac{-5}{14} \times \frac{2}{2}=\frac{-10}{28}, \frac{-3}{7}=\frac{-3}{7} \times \frac{4}{4}=\frac{-12}{28}, \frac{-1}{2}=\frac{-1}{2} \times \frac{14}{14}=\frac{-14}{28} \\
& \therefore \frac{-25}{28}<\frac{-14}{28}<\frac{-12}{28}<\frac{-10}{28} \\
& \quad \text { ie } \frac{-25}{28}, \frac{-1}{2}, \frac{-3}{7}, \frac{-5}{14}
\end{aligned}
$$

MATHEMATICS - 2

31. (B, C)
$11 \& 13$ are two twin primes
$\therefore 11 \times 13+1=143+1=144=12^{2}$
\therefore It is an even number and the result is a perfect square
$17 \& 19$ are twin primes
$\therefore 17 \times 19+1=323+1=324=18^{2}$
The result is an even number and perfect square
\therefore The result is always an even and perfect square
32. (A, C, D)

Let $\mathrm{a}=4 \& \mathrm{~b}=2$ then $\mathrm{a}-\mathrm{b}=4-2=2$ is a prime number

Let $a=9 \& b=5$ then $a-b=9-5=4$ is a composite number
$\therefore(a-b)$ is some times prime number
But $\mathrm{a}=6$ and $\mathrm{b}=5$ then
$\frac{\mathrm{a}}{\mathrm{b}}=\frac{6}{5}$ which is not a prime number
Let $\mathrm{a}=15$ is a composite number and
Let $\mathrm{b}=5$ is a prime number
$\therefore \frac{\mathrm{a}}{\mathrm{b}}=\frac{15}{5}=3$
Which is a prime
Every composite number is multiplied a prime then we get a compositive number
\therefore The product of a composite and a prime is always composite
33. (A, C, D)

Option A:- $\left(\frac{3 x-2}{3}\right)+\left(\frac{2 x+3}{2}\right)=x+\frac{7}{6}$
$\Rightarrow\left(\frac{3 x-2}{3}\right)+\left(\frac{2 x+3}{2}\right)-x=\frac{7}{6}$
$\Rightarrow \frac{2(3 x-2)+3(2 x+3)-6 x}{6}=\frac{7}{6}$
$\Rightarrow 6 x-4+6 x+9-6 x=\frac{7}{6} \times 6$
$6 x+5=7$
$6 x=7-5$
$6 x=2$
$x=\frac{2}{6}=\frac{1}{3}$ is not an integer
Option B:- $\frac{x}{2}+\frac{x}{3}-\frac{x}{6}=8$
$\frac{3 x+2 x-x}{6}=8$
$4 x=8 \times 6$
$x=\frac{8 \times 6}{4}=12$ is an integer
Option C :- $\left(\frac{7 x-3}{6}\right)-\left(\frac{2 x-3}{4}\right)=\frac{5}{4}$
$\frac{2(7 x-3)-3(2 x-3)}{12}=\frac{5}{4}$
$14 x-6-6 x+9=\frac{5}{4} \times 12$
$14 x-6 x+3=15$
$8 x=15-3$
$x=\frac{12}{8}$ is not an integer
Option D :- $\left(\frac{x+4}{2}\right)+\frac{3(1+2 x)}{4}=0$
$\frac{2(x+4)+3(1+2 x)}{4}=0$
$2 x+8+3+6 x=0 \times 4$
$8 x+11=0$
$8 x=-11$
$x=\frac{-11}{8}$ which is not an integer
34. (A, B, D)

In $\triangle P Q R, 42^{\circ}+57^{\circ}+\angle \mathrm{QPR}=180^{\circ}$
$\angle \mathrm{QPR}=180^{\circ}-42^{\circ}-57^{\circ}$
$=81^{\circ} \Rightarrow \angle \mathrm{PDI}=81^{\circ}$
[\because corresponding angles]
$\therefore \angle \mathrm{A}=\angle \mathrm{PDI}=81^{\circ}$
[\because corresponding angles]
Given $\angle P Q R=42^{\circ}$
$\therefore \angle \mathrm{RQE}=180^{\circ}-\angle \mathrm{PQR}$
$=180^{\circ}-42^{\circ}=138^{\circ}$
[\because Linear pair]
$\therefore \angle \mathrm{BHQ}=\angle \mathrm{RQE}=138^{\circ}$
[\because corresponding angles]
$\angle \mathrm{RGB}=\angle \mathrm{PRQ}=57^{\circ}$
[\because corresponding angles]
$\angle \mathrm{PRQ}+\angle \mathrm{PRI}=180^{\circ}$
$\therefore 57^{\circ}+\angle \mathrm{PRI}=180^{\circ}$
$\angle \mathrm{PRI}=180^{\circ}-57^{\circ}=123^{\circ}$
$\therefore \angle \mathrm{CIR}=\angle \mathrm{PRI}=123^{\circ}$
[\because Alternative angles]
35. (A, B, C, D)

Option A:- $\frac{-12}{7} \times 17 \times 13>\frac{-9}{13} \times 17 \times 13$
$-156>-153$ which is false
Option B :- $\frac{-13}{23} \times 23 \times 29>\frac{-15}{29} \times 23 \times 29$
$-377>-345$ whish is false
Option C : $-\frac{-15}{31} \times 31 \times 37<\frac{-29}{37} \times 31 \times 37$
$-555<-899$ which is a false
Option D:- $\frac{-98}{101} \times 101 \times 97<\frac{-96}{97} \times 101 \times 97$
$-9506<-9696$ which is false

REASONING

36. (A) Every time the image turn 45 degrees left and red \& yellow colours interchange their positions.

37. (C) Both the inside and outside arrows are moving in clockwise direction in options A, B and D. In option C, the inside arrow is moving in anticlockwise while the outside arrow is moving in clockwise direction.

38. (D)

39. (A) The first vowel from the left is I'. 3rd letter from I is R. The seventh letter to its right is ' S '
40. (A)

41. (D)
(A) $7>3$
(B) $47<48$
(C) $56=56$
(D) $6<17$
B and D represents same symbols
42. (C)

T111111171

43. (A)

44. (C) It has a circle in a star, a triangle in a square, a circle in a circle and two more white circles and a black circle.
45. (B)

CRITICAL THINKING

46. (D) $f=$ force required ; w = weight
di = distance $1 ; \quad \mathrm{d} 2=$ distance 2
$f=(w \times d 1) \div d 2$
Calculation : $f=(50 \times 1) \div d 2$
$=25 \mathrm{kgs}$
47. (A) P and S
48. (C)

49. (A) It is impossible to tell conclusively that Sravanthi is faster than Saritha.
50. (C) All school vans are 3 wheeler or 4 wheels, and motor vehicles are different.

The rend

