Foundation for Success

Unified International
Mathematics Olympiad

UNIFIED INTERNATIONAL MATHEMATICS OLYMPIAD (UPDATED)

CLASS - 8 Question Paper Code : UM9269

KEY

1	2	3	4	5	6	7	8	9	10
D	D	B	A	B	C	B	B	A	C
11	12	13	14	15	16	17	18	19	20
D	A	B	C	C	B	D	B	B	B
21	22	23	24	25	26	27	28	29	30
C	A	Delete	C	B	D	D	B	B	C
31	32	33	34	35	36	37	38	39	40
$\mathrm{~A}, \mathrm{D}$	$\mathrm{A}, \mathrm{B}, \mathrm{D}$	A, C	A, B	A, C	D	B	B	A	C
41	42	43	44	45	46	47	48	49	50
C	C	B	D	B	A	C	B	D	A

EXPLANATIONS

MATHEMATICS - 1

1. (D) $\left(x^{2}-5\right)^{2}=16$
$\left(x^{2}-5\right)= \pm \sqrt{16}$
$x^{2}-5= \pm 4$
$\therefore x^{2}-5=4$
$x^{2}=4+5$
$x^{2}=9$
$x= \pm \sqrt{9}$
$x= \pm 3$
(or)

$$
\begin{aligned}
& x^{2}-5=-4 \\
& x^{2}=-4+5 \\
& x^{2}=1 \\
& x= \pm \sqrt{1} \\
& x= \pm 1
\end{aligned}
$$

Hence four integers satisfy this equation
02. (D) $2^{8}+1=256+1=257$
$\therefore \quad 2^{18}+1=\left(2^{6}\right)^{3}+1=64^{3}+1$
$257<7^{3}<64^{3}<64^{3}+1$
$\therefore \quad$ No. of perfect cubes $=64-7+1=58$
03. (B) $\angle A C D=\angle A+\angle A B C$
$\therefore \quad \angle \mathrm{ACE}=\frac{\angle \mathrm{ACD}}{2}=\frac{\angle \mathrm{A}+\angle \mathrm{ABC}}{2}$
In $\triangle \mathrm{BCE}, \angle \mathrm{EBC}+\angle \mathrm{E}+\angle \mathrm{BCE}=180^{\circ}$

$$
\frac{\angle \mathrm{ABC}}{2}+\angle \mathrm{ACB}+\frac{\angle \mathrm{A}}{2}+\frac{\angle \mathrm{ABC}}{2}+\angle \mathrm{E} 180^{\circ}
$$

$$
\frac{\angle \mathrm{A}}{2}+\angle \mathrm{ABC}+\angle \mathrm{ACB}+\angle \mathrm{E}=180^{\circ}
$$

$\angle \mathrm{E}=180^{\circ}-\angle \mathrm{ABC}-\angle \mathrm{ACB}-\frac{\angle \mathrm{A}}{2}$
$=\angle \mathrm{A}+\angle \mathrm{ABC}+\angle \mathrm{ACB}-\angle \mathrm{ABC}-\angle \mathrm{ACB}-\frac{\angle \mathrm{A}}{2}$
$\left[\because \ln \triangle \mathrm{ABC} \angle \mathrm{A}+\angle \mathrm{ABC}+\angle \mathrm{ACB}=180^{\circ}\right]$
$=\angle \mathrm{A}-\frac{\angle \mathrm{A}}{2}$
$=\frac{2 \angle \mathrm{~A}-\angle \mathrm{A}}{2}$
$=\frac{\angle \mathrm{A}}{2} \Rightarrow \frac{120^{\circ}}{2}=60^{\circ}$
04. (A) $\sqrt[3]{-2 \times 2 \times 2 \times 7 \times 7} \times \sqrt[3]{4 \times 4 \times 4 \times 7}$
$\Rightarrow \sqrt[3]{-2 \times 2 \times 2 \times 7 \times 7 \times 7 \times 4 \times 4 \times 4}$
$\Rightarrow-2 \times 7 \times 4$
$\Rightarrow-56$
05. (B) First term

$$
=\sqrt{1+1+\frac{1}{4}}=\sqrt{\frac{9}{4}}=\frac{3}{2}=2-\frac{1}{2}
$$

Sum of first two terms $=\frac{3}{2}+\sqrt{1+\frac{1}{4}+\frac{1}{9}}$
$=\frac{3}{2}+\sqrt{\frac{36+9+4}{36}}=\frac{3}{2}+\frac{7}{6}=\frac{9+7}{6}=\frac{16^{8}}{\not 6_{3}}$
$=3-\frac{1}{3}$
Sum of first three terms
$=\frac{8}{3}+\sqrt{1+\frac{1}{9}+\frac{1}{16}}=\frac{8}{3}+\frac{13}{12}$
$\frac{45}{12}=\frac{15}{4}=4-\frac{1}{4}$
$\therefore \quad$ Sum of all terms $=2021-\frac{1}{2021}$
06. (C) Given a $-x=\sqrt{x^{2}+1}$
squaring on both sides
$(a-x)^{2}=\left(\sqrt{x^{2}+1}\right)^{2}$
$\mathrm{a}^{2}-2 \mathrm{a} x+x^{2}=x^{2}+1$
$\mathrm{a}^{2}-1=2 \mathrm{ax}$
$2 x=\frac{a^{2}-1}{a}=a-\frac{1}{a}=\left(a-a^{-1}\right)$
$\therefore \quad x=\frac{1}{2}\left(a-a^{-1}\right)$
07. (B) $\left[\frac{1}{x-2}-\frac{4}{x^{2}-4}\right]=$
$\left[\frac{x+2-4}{x^{2}-4}\right]=\frac{(x-2)}{(x+2)(x-2)}=\frac{1}{(x+2)}$
08. (B) $\left(3 x+8 x^{2}\right)^{2}+\left(3 x^{2}+8 x\right)^{2}$

$$
\begin{aligned}
& =9 x^{2}+48 x^{3}+64 x^{4}+9 x^{4}+48 x^{3}+64 x^{2} \\
& =9\left(x^{2}+x^{4}\right)+96 x^{3}+64\left(x^{4}+x^{2}\right) \\
& =9\left(x^{2}+x^{3} \times x\right)+96(1)+64\left[x \times x^{3}+x^{2}\right] \\
& =9\left(x^{2}+x\right)+96+64\left(x+x^{2}\right) \\
& =9(-1)+96(1)+64(-1) \\
& =96-73=23
\end{aligned}
$$

Diagonal of the (base) rectangle
$=\sqrt{l^{2}+b^{2}}=\sqrt{10^{2}+10^{2}}$
$=\sqrt{200}$
$\therefore \quad$ length of the longest pole
$=\sqrt{(\text { base diagonal })^{2}+h^{2}}$
$=\sqrt{(\sqrt{200})^{2}+(5 m)^{2}}$
$=\sqrt{225} \mathrm{~m}$
$=15 \mathrm{~m}$
10. (C) Given $x+\frac{9}{x}=6 \Rightarrow \frac{x^{2}+9}{x}=6$
$\Rightarrow x^{2}-6 x+9=0$
$\Rightarrow x^{2}-3 x-3 x+9=0$
$\Rightarrow x=3$
$\therefore \quad x^{2}+\frac{9}{x^{2}}=9+\frac{9}{9}=9+1=10$
11. (D) Area of the shaded region = Total area inner rectangle area
$=(2 x+3)(2 x-3) \mathrm{cm}^{2}-(x+1)(x+5) \mathrm{cm}^{2}$
$=\left[4 x^{2}-9-\left(x^{2}+6 x+5\right)\right] \mathrm{cm}^{2}$
$=\left[4 x^{2}-9-\left(x^{2}+6 x+5\right)\right] \mathrm{cm}^{2}$
$=\left(3 x^{2}-6 x-14\right) \mathrm{cm}^{2}$
12. (A) Given QRS is divisible by $5 \Rightarrow \mathrm{~S}=5$

Given RST is divisible by 3
$\Rightarrow R+T=4, R+T=7$
Given PQR is divisible by 4
\Rightarrow QR may be $12,24,32,52$
If $R=2$ then $R+T=4 \Rightarrow T=2$ But $T \neq 2$
If $R=2$ then $R+T=7 \Rightarrow T=5$ But $T \neq 5$
$\therefore \quad \mathrm{R}=4 \Rightarrow \mathrm{R}+\mathrm{T}=7 \Rightarrow \mathrm{~T}=3$

If $R=4$ then Q must be $2 \Rightarrow$ $Q=2$
$\therefore \quad P=1$
$\therefore \quad$ The required number $=12453$
13. (B) $\frac{23}{2^{5} \times 5^{6}}=\frac{23}{10^{5} \times 5}=\frac{4.6}{10^{5}}=\frac{4.6}{100000}$ $=0.000046$
14. (C) Given $\frac{x^{2}+1}{x}=2$
$\Rightarrow x^{2}+1=2 x$
$\Rightarrow x^{2}-2 x+1=0$
$\Rightarrow(x-1)^{2}=0$
$x-1=0$
$x=1$
$\therefore x^{2}+\frac{1}{x^{8}}=(1)^{2}+\frac{1}{\left(1^{8}\right)}=1+1=2$
15. (C)

In $\triangle A B C, \angle A B C=90^{\circ} \Rightarrow A C^{2}=A B^{2}+B C^{2}$
$=12^{2}+16^{2}$
$=144+256$
$A C=\sqrt{400}$
$A C=20 \mathrm{~cm}$
Area of $\mathrm{ABC}=\frac{1 / 2}{12} \times \mathrm{AC} \times \mathrm{BD}=\frac{1 /}{12} \times \mathrm{AB} \times$
$\mathrm{BC} \Rightarrow 20 \mathrm{~cm} \times \mathrm{BD}=12 \times 16 \mathrm{~cm}^{2}$
$B D=\frac{12 \times 16^{4} \mathrm{~cm}^{2}}{2 Q_{5} \mathrm{~cm}}=9.6 \mathrm{~cm}$
16. (B) $3 x^{2}+\sqrt{60} x y+5 y^{2}=(\sqrt{3} x)^{2}+2 \sqrt{15} x y$ $+(\sqrt{5} y)^{2}$
$=(\sqrt{3} x)^{2}+2 \sqrt{3} x+\sqrt{5} y+(\sqrt{5} y)^{2}$
$=(\sqrt{3} x+\sqrt{5} y)^{2}$
$\therefore(\sqrt{3} x+\sqrt{5} y)$ is a factor of $\left(3 x^{2}+\sqrt{60} x y+5 y^{2}\right)$
17. (D) Given $A B|\mid D C$ and $A D$ is not parallel to $B C$
$\therefore \quad \angle \mathrm{DAC} \neq \angle \mathrm{ACB}$
$\therefore \quad$ we cannot find $\angle \mathrm{ACB}$
18. (B) Given $\pi R^{2}=\pi r_{1}{ }^{2}+\pi r_{2}{ }^{2}$
$\Rightarrow \quad \not \pi \mathrm{R}^{2}=\nRightarrow\left(63^{2}+16^{2}\right) \mathrm{cm}^{2}$
$R^{2}=(3969+256) \mathrm{cm}^{2}$
$\mathrm{R}=\sqrt{4225} \mathrm{~cm}^{2}$
$\mathrm{R}=65 \mathrm{~cm}$
$\therefore \quad$ Diameter $=2 R=130 \mathrm{~cm}$
19. (B) \quad Given $\mathrm{a}^{3}=1728 \mathrm{~cm}^{3}=(12 \mathrm{~cm})^{3}$
$\therefore \quad a=12 \mathrm{~cm}$
$\therefore \quad l=\mathrm{a}+\mathrm{a}=24 \mathrm{~cm}, \mathrm{~b}=12 \mathrm{~cm}$ and $\mathrm{h}=12 \mathrm{~cm}$
surface area $=2(l b+b h+b l)$
$=2(24 \times 12+12 \times 12+12 \times 24) \mathrm{cm}^{2}$
$=2 \times 12 \times 12(2+1+2) \mathrm{cm}^{2}$
$=1440 \mathrm{~cm}^{2}$
20. (B) Total balls $=9+12=21$
\therefore Probability of drawing a black ball
$=\frac{\text { No.of black balls }}{\text { Total balls }}=\frac{9}{21}=\frac{3}{7}$
21. (C) The number of revolutions is directly proportional to the number of hours.
$\therefore 19500: x=3: 7$
$\Rightarrow x=\frac{19500^{6500} \times 7}{3}=45500$
$\therefore \quad$ The wheel revolves 45,500 times in 7 hours
22. (A) Top view of a cube is square
23. (Delete)
24. (C) $8^{3}=\left(2^{3}\right)^{3}=2^{9}$

$$
4^{4.5}=\left(2^{2}\right)^{4.5}=2^{2 \times 4.5}=2^{9}
$$

$\therefore \quad \frac{8^{3}}{\left(4^{4.5}\right)}=\frac{2^{9}}{2^{9}}=2^{9-9}=2^{0}=1$
25. (B) $\frac{3^{2023}-3^{2022}+3^{2021}}{3^{2022}+3^{2021}-3^{2020}}=\frac{3^{2021}\left(3^{2}-3+1\right)}{3^{2020}\left(3^{2}+3-1\right)}$
$=3^{2021-2020} \frac{(9-3+1)}{(9+3-1)}$
$=3 \times \frac{7}{11}=\frac{21}{11}$
26. (D) $\sqrt{(1234567)^{2}-2469133}$
$=\sqrt{(1234567)^{2}-2469133-1+1}$
$=\sqrt{(1234567)^{2}-2469134+1}$
$=\sqrt{(1234567)^{2}-2(1234567)(1)+1^{2}}$
$=\sqrt{(1234567-1)^{2}}$
= 1234566
27. (D) Given $Q R=P R$
$\Rightarrow 4 x-7=2 x+5$
$4 x-2 x=5+7$
$2 x=12$
$x=\frac{12}{2}=6$
$\therefore \quad P R=2 x+5=2 \times 6+5=17 \mathrm{~cm}$
$\therefore \quad P Q=17 \mathrm{~cm}$
28. (B) $\left(\frac{x^{a}}{x^{b}}\right)^{a^{2}+a b+b^{2}}=\left(x^{a-b}\right)^{\left(a^{2}+a b+b^{2}\right)}$
$=x^{(\mathrm{a}-\mathrm{b})\left(\mathrm{a}^{2}+\mathrm{ab}+\mathrm{b}^{2}\right)}$
$=x^{a^{3}+a^{2} b+a b^{2}-a^{2} b-a b^{2}-b^{3}}$
$=x^{\mathrm{a}^{3}-b^{3}}$
Similarly $\left(\frac{x^{\mathrm{b}}}{x^{\mathrm{c}}}\right)^{\left(\mathrm{b}^{2}+\mathrm{bc}+\mathrm{ca}\right)}=x^{\mathrm{b}^{3}-\mathrm{c}^{3}}$ and $\left(\frac{x^{c}}{x^{\mathrm{a}}}\right)^{\left(\mathrm{c}^{2}+\mathrm{ac}+\mathrm{a}^{2}\right)}=x^{\mathrm{c}^{3}-\mathrm{a}^{3}}$
$\therefore\left(\frac{x^{a}}{x^{b}}\right)^{\left(a^{2}+a b+a^{2}\right)}\left(\frac{x^{b}}{x^{c}}\right)^{\left(b^{2}+b c+c^{2}\right)}$
$\left(\frac{x^{c}}{x^{a}}\right)^{\left(c^{2}+c a+a^{2}\right)}=x^{a^{3}-b^{3}} x^{b^{3}-c^{3}} x^{c^{3}-a^{3}}$

$=x^{0}$
$=1$
29. (B) \qquad 180
? \qquad 400
$\Rightarrow \quad 400 \times \frac{90^{\circ}}{180^{\circ}}=200^{\circ}$
Angle of sector showing oranges $=200^{\circ}$
$\therefore \quad 90^{\circ}+200^{\circ}+x^{\circ}=360^{\circ}$
$\Rightarrow \quad x=360^{\circ}-290^{\circ}=70^{\circ}$
30. (C) It is in inverse proportion.
$\therefore \quad x_{1} y_{1}=x_{2} y_{2}$
$18 \times 10=x_{2} \times 6$
$x_{2}=\frac{18^{3} \times 10}{\varnothing_{1}}=30$
$\therefore \quad$ More men required $=30-18=12$

MATHEMATICS - 2

31. (A, D)

$$
\begin{array}{ll}
& \text { Given } \frac{3^{x}}{3^{2}}+\frac{3^{3}}{3^{x}}=4 \Rightarrow \frac{\left(3^{x}\right)^{2}+3^{5}}{3^{x} \times 9}=4 \\
\Rightarrow & \left(3^{x}\right)^{2}+3^{5}=36+3^{x} \\
\Rightarrow \quad & \left(3^{x}\right)^{2}-36 \times 3^{x}+243=0 \\
& \text { let } 3^{x}=a \Rightarrow a^{2}-36 a+243=0 \\
\Rightarrow & a^{2}-27 a-9 a+243=0 \\
\Rightarrow & a(a-27)-9(a-27)=0 \\
\Rightarrow & \begin{array}{ll}
(a-27)(a-9)=0 \\
\Rightarrow & a=27 \quad \\
\Rightarrow & 3^{x}=3^{3} \quad \text { (or) } \quad a=9 \\
\therefore & x=3 \quad \text { (or) } \quad 3^{x}=3^{2} \\
& x \quad \text { (or) } \quad 2
\end{array}
\end{array}
$$

32. (A, B, D)

LHS $=\sqrt{\left(x^{2}+x-12\right)\left(x^{2}-x-20\right)\left(x^{2}-8 x+15\right)}$
$=\sqrt{(x+4)(x-3)(x+4)(x-5)(x-3)(x-5)}$
$=\sqrt{(x-3)^{2}(x+4)^{2}(x-5)^{2}}$
$=(x-3)(x+4)(x-5)=(x+4)\left(x^{2}-8 x+15\right)$
$=(x-5)\left(x^{2}+x-12\right)$
$=x\left(x^{2}+x-12\right)-5\left(x^{2}+x-12\right)$
$=x^{3}+x^{2}-12 x-5 x^{2}-5 x+60$
$=\left(x^{3}-4 x^{2}-17 x+60\right)$
33. (A, C)

$$
\begin{aligned}
& 6-\frac{7}{x}-\frac{20}{x^{2}}=\frac{6 x^{2}-7 x-20}{x^{2}} \\
& =\frac{1}{x^{2}}\left(6 x^{2}-15 x+8 x-20\right) \\
& =\frac{1}{x^{2}}[3 x(2 x-5)+4(2 x-5)] \\
& =\frac{1}{x^{2}}(2 x-5)(3 x+4) \\
& =\left(\frac{2 x-5}{x}\right)\left(\frac{3 x+4}{x}\right) \\
& =\left(2-\frac{5}{x}\right)\left(3+\frac{4}{x}\right)
\end{aligned}
$$

34. (A, B)

In a square \& rectangle diagonals are equal because SAS congruency.
In a parallelogram adjacent angles need not be equal.
$\therefore \quad$ In a parallelogram diagonals need not be equal.
35. (A, C)

Given $\sqrt[3]{5 x}=\sqrt{2 x}$
Rising $6^{\text {th }}$ power on both sides
$(\sqrt[3]{5 x})^{6}=(\sqrt{2 x})^{6}$
$(5 x)^{2}=(2 x)^{3}$
$\therefore \quad 25 x^{2}=8 x^{3}$

$$
\begin{aligned}
\Rightarrow & 8 x^{3}-25 x^{2}=0 \\
& x^{2}(8 x-25)=0 \\
& x^{2}=0 \text { (OR) } 8 x-25=0 \\
& x=0 \text { (OR) } x=\frac{25}{8}
\end{aligned}
$$

REASONING

36. (D) Missing number is 16. Alphabets are starting from A, B, C, K.

Every time the alphabet are place before and after the number. Every time difference between two numbers is increased by $0,1,2,3,4,5,6,7,8 \ldots$
37. (B)

38. (B)

39. (A) The cut-out is apparent in more than one quadrant.

40. (C) dionot = oak tree
blyonot = oak leaf
blycrin = maple leaf
oak $=$ onot
leaf = bly
maple $=$ crin
Hence $\underline{\text { maple }}$ syrup $=$ patricrin
41. (C) Option (A) : $3 \div 4 \times 2=9 \div 3-3$
$3 / 2=0 \quad$ (wrong)
Option (B) : $5+3-7>8 \div 4 \div 1$
$1>2$ (wrong)
Option (C) : $5 \times 2 \div 2<10-4+8$
$5<14 \quad$ (correct)
Option (D) : 3+2-4>16×2 $\div 4$
$1>8$ (wrong)
98720ant
42. (C)

28د509nf

43. (B)

44. (D) All students are men, some men are students, some men are sportsperson are all correct statements according to the given diagram.
45. (B) $\quad 6^{\text {th }} \rightarrow$ Tuesday
(2 days preceding Thursday)
$13^{\text {th }} \rightarrow$ Tuesday
$20^{\text {th }} \rightarrow$ Tuesday
$21^{\text {st }} \rightarrow$ Wednesday
$22^{\text {nd }} \rightarrow$ Thursday
$23^{\text {rd }} \rightarrow$ Friday
$24^{\text {th }} \rightarrow$ Saturday
$25^{\text {th }} \rightarrow$ Sunday
$26^{\text {th }} \rightarrow$ Monday
Hence $25^{\text {th }}$ of the month will be sunday and is followed by $26^{\text {th }}$ on monday.

CRITICAL THINKING

46. (A) If Statement I is the 'Cause' and the Statement II is the 'Effect'.
47. (C) Rope X and Z

50 kg presses in the downward direction. So the rope Y is needed to counter it and press in upward direction. Now the forces are balanced and the ropes X and Z are not needed.
48. (B)
 is not possible, same colour cubes in two different places.
49. (D)

50. (A)

The 'rad

