

UNIFIED INTERNATIONAL MATHEMATICS OLYMPIAD (UPDATED)

CLASS - 9

Question Paper Code : UM9269

KEY

1	2	3	4	5	6	7	8	9	10
В	В	D	А	В	С	В	А	В	А
11	12	13	14	15	16	17	18	19	20
С	А	С	В	С	А	D	С	С	А
21	22	23	24	25	26	27	28	29	30
D	С	В	А	А	D	А	А	С	А
31	32	33	34	35	36	37	38	39	40
B,C,D	B,D	A,C,D	A,B,C,D	B,D	D	С	В	С	D
41	42	43	44	45	46	47	48	49	50
А	С	В	А	С	А	А	D	В	D

EXPLANATIONS

MATHEMATICS - 1

01. (B)
$$\frac{3-\sqrt{5+x}}{(x-4)} = \frac{3-\sqrt{5+x}}{(x-4)} \times \frac{3+\sqrt{5+x}}{3+\sqrt{5+x}}$$

$$= \frac{3^2 - (\sqrt{5+x})^2}{(x-4)(3+\sqrt{5+x})}$$
$$= \frac{9-5-x}{(x-4)(3+\sqrt{5+x})}$$

$$= \frac{4-x}{(x-4)(3+\sqrt{5+x})}$$
$$= \frac{-1(x-4)}{(x-4)(3+\sqrt{5+x})}$$

02. (B) Given OPQR is a rectangle \Rightarrow OQ = PR = r \therefore PR = 5 cm

03. (D)
$$x^{2} - 3x - 4 = x^{2} - 4x + x - 4$$

 $= x(x - 4) + 1 (x - 4)$
 $= (x + 1) (x - 4)$
 $x + 1$

$$x + 1$$

$$x^{2} + x - 3$$

$$x^{3} + x^{2}$$

$$(-) (-)$$

$$x^{2} - 2x - 3$$

$$x^{2} + x$$

$$(-) (-)$$

$$x^{2} - 2x - 3$$

$$x^{2} + x$$

$$(-) (-)$$

$$-3x - 3$$

$$-3x - 3$$

$$(+) (+)$$

$$0$$
(x + 1) is a factor of $(x^{3} + 2x^{2} - 2x - 3)$
HCF of $(x^{2} - 3x - 4)$ and $(x^{3} + 2x^{2} - 2x - 3)$
HCF of $(x^{2} - 3x - 4)$ and $(x^{3} + 2x^{2} - 2x - 3)$

$$= (x + 1)$$
04. (A) $x^{4} - 625 = (x^{2})^{2} - (25)^{2}$

$$= (x^{2} - 25) (x^{2} + 25)$$

$$= (x^{2} - 25) [(x + 5)^{2} - (\sqrt{10x})^{2}]$$

$$= (x^{2} - 25) [(x + 5)^{2} - (\sqrt{10x})^{2}]$$

$$= (x^{2} - 25) (x + \sqrt{10x} + 5) (x - \sqrt{10x} + 5)$$
05. (B)
$$\frac{3x^{2}}{5} - \frac{11x}{5} - 4 = \frac{3x^{2} - 11x - 20}{5}$$

$$= \frac{1}{5} [3x(x - 5) + 4(x - 5)]$$

$$= \frac{1}{5} [3x(x - 5) + 4(x - 5)]$$

$$\therefore (3x + 4) \text{ is a factor of } \frac{3x^{2}}{5} - \frac{11x}{5} - 4$$
(or)
$$\frac{3x^{2}}{5} - \frac{11x}{5} - 4 = \frac{3x^{2}}{5} - 3x + \frac{4x}{5} - 4$$

$$= 3x\left(\frac{x}{5}-1\right)+4\left(\frac{x}{5}-1\right)$$
$$= \left(\frac{x}{5}-1\right)(3x+4)$$

06. (C) $\sqrt{120-30\sqrt{15}} = \sqrt{120-2\times15\sqrt{15}}$
$$= \sqrt{120-2\sqrt{15\times15\times15}}$$
$$= \sqrt{75+45-2\times\sqrt{75\times45}}$$
$$= \sqrt{\left(\sqrt{75}\right)^{2}+\left(\sqrt{45}\right)^{2}-2\sqrt{75}\times\sqrt{45}}$$
$$= \left(\sqrt{75}-\sqrt{45}\right)$$
$$= \left(5\sqrt{3}-3\sqrt{5}\right)$$

07. (B) $\frac{14}{\sqrt{6}-\sqrt{5}-\sqrt{11}} = \frac{14}{\left(\sqrt{6}-\sqrt{5}\right)-\sqrt{11}} \times \frac{\left(\sqrt{6}-\sqrt{5}\right)+\left(\sqrt{11}\right)}{\left(\sqrt{6}-\sqrt{5}\right)+\sqrt{11}}$

$$=\frac{14\left(\sqrt{6}-\sqrt{5}+\sqrt{11}\right)}{-\left(2\sqrt{30}\right)}$$

$$=\frac{-7(\sqrt{6}-\sqrt{5}+\sqrt{11})}{\sqrt{30}}\times\frac{\sqrt{30}}{\sqrt{30}}$$

$$=\frac{-7(6\sqrt{5}-5\sqrt{6}+\sqrt{330})}{30}$$

08. (A)
$$3p(x) + 7q(x) + r(x)$$

= $19x^3 - 15x^2 + 11x + 11$

09. (B)
$$\sqrt[3]{4}$$
, $\sqrt[4]{5}$, $\sqrt[4]{6}$, $\sqrt[3]{8}$
= 4^{1/3}, 5^{1/4}, 6^{1/4}, 8^{1/3}
L.C.M of 3 & 4 = 12
So, the given surds can be written as,
= 4^{4/12}, 5^{3/12}, 6^{3/1/2}, 8^{4/12}
= (4⁴)^{1/12}, (5³)^{1/12}, (6³)^{1/12}, (8⁴)^{1/12}
= (256)^{1/12}, (125)^{1/12}, (216)^{1/12}, (4096)^{1/12}
∴ The smallest one is $\sqrt[4]{5}$.
10. (A) Given (x – 2) is a factor of p(x) \Rightarrow p(2) = 0
 $2^3 - 3(2)^2 + p(2) + 24 = 0$
 $\Rightarrow 8 - 12 + 2p + 24 = 0$
 $\Rightarrow 8 - 12 + 2p + 24 = 0$
 $\Rightarrow 2p = -20$
∴ p = -10
Given (x – 2) is a factor of g(x)
∴ g(2) = 0
(2)² - 7(2) + q = 0
 $\Rightarrow 4 - 14 + q = 0$
 $\Rightarrow -10 + q = 0 \Rightarrow q = 10$
∴ p + q = -10 + 10 = 0
11. (C) Let $x = 2 & y = \frac{-5}{2}$ then $5x - 4y$
 $= 5(2) - A^2 \left(\frac{-5}{2}\right)$
 $= 10 + 10$
 $= 20$
 $= RHS$
∴ (2, $\frac{-5}{2}$) lies on the line $5x - 4y = 20$
12. (A) Infinite number of lines can pass through
a single point. So, the statement given in
option (A) is the incorrect statement.

17. (D) Given C = 116 cm, a = 123 cm, b = 89 cm

Given height of cone (h) = 12 cm and radius = 3.5 cm

$$\therefore$$
 Slant height of cone (*l*) = $\sqrt{h^2 + r^2}$

$$= \sqrt{12^{2} + 3.5^{2}}$$
$$= \sqrt{144 + 12.25}$$
$$= \sqrt{156.25}$$
$$l = 12.5 \text{ cm}$$

Total surface area of the toy = CSA of the cone + CSA of the hemisphere

$$= \pi r l + 2\pi r^{2}$$

$$= \pi r (l + 2r)$$

$$= \frac{22}{7} \times 3.5 (12.5 + 2 \times 3.5) cm^{2}$$

$$= 11 \times 19.5 cm^{2}$$

$$= 214.5 cm^{2}$$
Given 4s = 404 m

$$\therefore$$
 s = $\frac{404}{4}$ m

Given AC = 198 m

$$\therefore$$
 AE = $\frac{AC}{2}$ = 99 m

In $\triangle AEB$, $\angle AEB = 90 \implies AB^2 = AE^2 + EB^2$ $101^2 = 99^2 + EB^2$ $101^2 - 99^2 = EB^2$ $EB = \sqrt{(101 + 99)(101 - 99)}$ $= \sqrt{200 \times 2} = 20$

$$\therefore BD = 2 \times 20 \text{ m} = 40 \text{ m}$$
Area of the field = $\frac{1}{2} \times AC \times BD$

$$= \frac{1}{\chi_1} \times 198 \times 40^{20} \text{ m}^2$$
= 3960 m²
21. (D) $\angle POT = 2(25^\circ) = 50^\circ$
 $x^\circ = \frac{180^\circ + 50^\circ}{2} = 115^\circ$
22. (C) Volume of prism = Area of cross section \times Length
 $300 = \frac{1}{2}(4+6)(h) \times 12$
 $= \frac{1}{2}(10)h \times 12 = 60h \therefore h = \frac{300}{60} = 5 \text{ cm}$
23. (B) Let a = 10,000 & b = 55 then
 $(a + b)^3 - (a - b)^3 = (a^3 + 3a^2b + 3ab^2 + b^3)$
 $- (a^3 - 3a^2b + 3ab^2 - b^3)$
 $= a^3 + 3a^2b + 3ab^2 + b^3 - a^3 + 3a^2b - 3ab^2 + b^3$
 $= 6a^2b + 2b^3$
 $= 2b(3a^2 + b^2)$
 $= 2 \times 55 [3 \times (10000)^2 + (55)^2]$
 $= 110 (3 \times 10000000 + 3025]$
 $= 110 \times 30003025$
 $= 3300032750$
24. (A) Clearly, ABCD is a cyclic quadrilateral. Then $\angle BCD = 180^\circ - \angle BAD$
 $= 180^\circ - 100^\circ = 80^\circ$
 $\ln ABAQ, y + 100^\circ + 25^\circ = 180^\circ \Rightarrow y = 55^\circ$
 $\ln ABCP, y + 80^\circ + x = 180^\circ \Rightarrow x = 45^\circ$

25. (A) Volume of the box = outer volume – inner volume $= 30 \times 25 \times 20 \text{ cm}^3 - (30 - 2 \times 1.5)$ $(25 - 2 \times 1.5)(20 - 1.5)$ cm³ = 15000 cm³ - 27 × 22 × 18.5 cm³ $= 15000 \text{ cm}^3 - 10989 \text{ cm}^3$ = 4011 cm³ = 401.1 × 10 cm³ = 401.1 × 8 g [Given 10 cm³ wood weight = 85] = 3208.8 g = 3.2088 kg = 3.209 kg 26. (D) Construction :-Extend ED up to G Е А

$$\angle$$
BCD = \angle CDE = 90° \Rightarrow BC || GE
 $\Rightarrow \angle$ EGF = \angle CBG = 35°
[\because corresponding angles]
In \triangle GFD, \angle DGF + \angle DFG = \angle FDE
 $\therefore x = 35° + 25° = 60°$

27. (A) \triangle ABC is a right triangle.

$$\therefore \qquad AC^2 = AB^2 + BC^2$$

- = 16 + 9 = 25
- \Rightarrow AC = 5 cm

Area of the quad. ABCD

= Area of rt. \triangle ABC + Area of rt. \triangle ACD

$$=\frac{1}{2} \times 4 \times 3 + \frac{1}{2} \times 5 \times 12$$

$$= 6 + 30 = 36 \text{ cm}^2$$

28. (A) Area of parallelogram with base AB and
attitude AM
= 12 × 9 = 108 cm²
108 cm² = AD × 11 cm

$$\Rightarrow AD = \frac{108}{11} cm$$
29. (C) A point has no dimension
30. (A) Given AB || CD
$$\Rightarrow \left(\frac{5x}{3} - \frac{3x}{4}\right) = 77^{\circ}$$
[: Exterior Alternative angles]

$$\Rightarrow \frac{20x - 9x}{12} = 77^{\circ}$$

$$\frac{11x}{12} = 77^{\circ}$$

$$x = \frac{77^{\circ}^{7}}{\frac{12}{21}} = 84^{\circ}$$
MATHEMATICS - 2
31. (B, C, D)

Irrational numbers are part of Real numbers

- ... Sum of two irrational numbers is always a real number
- ... Option 'B' is true

 $-\sqrt{3} + \sqrt{3} = 0$ which a rational number

But $\sqrt{3} + \sqrt{5}$ is an irrational number

- ... Sum of irrational numbers is some times rational number and sum times irration number
- ∴ Option 'B' is falseBut option 'C' and 'D' are true

Given $x^2 + x(c - b) + (c - a)(a - b) = 0$ $\Rightarrow x^2 + x[c - a + a - b] + (c - a)(a - b) = 0$ $x^{2} + x[(c-a) + (a-b)] + (c-a)(a-b) = 0$ $x^{2} + x(c-a) + x(a-b) + (c-a)(a-b) = 0$ x[x + c - a] + (a - b)[x + c - a] = 0(x + c - a)(x + a - b) = 0x + c - a = 0x + c - a = 0*.*. x = (a - c)(or) x + a - b = 0x = (b - a)33. (A, C, D) For option A :- $2022/2022 \times 2022/2022^{2021}$ $=\frac{2022}{\sqrt{2022 \times 2022^{2021}}}$ $=\sqrt[2022]{2022^{1+2021}}$ $=\frac{2022}{2022}$ = 2022 which is a rational number For option B :- $2022\sqrt{2022} \times \sqrt{2022}^{2023}$ $=\frac{2022}{2022}$ = $2022 \times \sqrt{2022^2}$ is not a rational number For option C :- $=\frac{2022}{\sqrt{2022}}\times\frac{2022}{\sqrt{2022}}$ $=\frac{2022}{2022}$ = (2022)² which is a rational number For option D :- $2022/2022 \times 2022/2022^{6065}$ $=\frac{2022}{2022}$ = (2022)³ which a rational number

32. (B, D)

34. (A, B, C, D) $\sqrt{2} = 1.4142 \& \sqrt{3} = 1.732$ 1.5, 1.515, 1.616263... $\& \frac{\sqrt{2} + \sqrt{3}}{2}$ are the real numbers lie between $\sqrt{2}$ and $\sqrt{3}$ 35. (B, D) $x^2 + 2x - P^2 - 2P = x^2 - P^2 + 2x - 2p$ = (x + P)(x - P) + 2(x - P) = (x - P)(x + P + 2)**REASONING**

36. (D) The number of white dots is increased by one each time, both vertically and horizontally, and all white dots are connected.

42. (C) Anurudh > Bharath(lawyer) Doctor > Dhanush (Engineer) Bharath and Dhanush did not start 40 lakhs Lawyer and Engineer did not start 40 lakhs Cricketer earned the most at that time so, cricketer also did not start with 40 lakhs. Doctor \rightarrow 40 lakhs Doctor > Dhanush (Engineer) Dhanush(Engineer) \rightarrow 30 lakhs Santosh (Doctor) \rightarrow 40 lakhs Bharath (lawyer) \rightarrow 60 laksh Anurudh (Cricketer) \rightarrow 70 Anurudh > Bharath Santosh profession is doctor *.*.. 5 + 15 + 5 = 25 m 43. (B) 23 R 20

