Foundation for Success

Unified International
Mathematics Olympiad

UNIFIED INTERNATIONAL MATHEMATICS OLYMPIAD (UPDATED)

KEY

1	2	3	4	5	6	7	8	9	10
B	B	D	A	B	C	B	A	B	A
11	12	13	14	15	16	17	18	19	20
C	A	C	B	C	A	D	C	C	A
21	22	23	24	25	26	27	28	29	30
D	C	B	A	A	D	A	A	C	A
31	32	33	34	35	36	37	38	39	40
$\mathrm{~B}, \mathrm{C}, \mathrm{D}$	B, D	$\mathrm{A}, \mathrm{C}, \mathrm{D}$	$\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$	B, D	D	C	B	C	D
41	42	43	44	45	46	47	48	49	50
A	C	B	A	C	A	A	D	B	D

EXPLANATIONS

MATHEMATICS - 1

1. (B) $\frac{3-\sqrt{5+x}}{(x-4)}=\frac{3-\sqrt{5+x}}{(x-4)} \times \frac{3+\sqrt{5+x}}{3+\sqrt{5+x}}$

$$
\begin{aligned}
& =\frac{3^{2}-(\sqrt{5+x})^{2}}{(x-4)(3+\sqrt{5+x})} \\
& =\frac{9-5-x}{(x-4)(3+\sqrt{5+x})}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{4-x}{(x-4)(3+\sqrt{5+x})} \\
& =\frac{-1(x-4)}{(x-4)(3+\sqrt{5+x})}
\end{aligned}
$$

2. (B) Given OPQR is a rectangle
$\Rightarrow O Q=P R=r$
$\therefore \quad P R=5 \mathrm{~cm}$
3. (D) $x^{2}-3 x-4=x^{2}-4 x+x-4$

$$
\begin{aligned}
& =x(x-4)+1(x-4) \\
& =(x+1)(x-4)
\end{aligned}
$$

$$
x+1 \begin{aligned}
& x^{2}+x-3 \\
& \begin{array}{l}
x^{3}+2 x^{2}-2 x-3 \\
x^{3}+x^{2} \\
(-)(-) \\
x^{2}-2 x-3 \\
x^{2}+x \\
\frac{(-)(-)}{-3 x-3} \\
-3 x-3 \\
\frac{(+)(+)}{0}
\end{array} \\
& \frac{1}{2}
\end{aligned}
$$

$(x+1)$ is a factor of $\left(x^{3}+2 x^{2}-2 x-3\right)$
HCF of $\left(x^{2}-3 x-4\right)$ and $\left(x^{3}+2 x^{2}-2 x-3\right)$ $=(x+1)$
04. (A) $x^{4}-625=\left(x^{2}\right)^{2}-(25)^{2}$
$=\left(x^{2}-25\right)\left(x^{2}+25\right)$
$=\left(x^{2}-25\right)\left[x^{2}+5^{2}+10 x-10 x\right]$
$=\left(x^{2}-25\right)\left[(x+5)^{2}-(\sqrt{10 x})^{2}\right]$
$=\left(x^{2}-25\right)(x+\sqrt{10 x}+5)(x-\sqrt{10 x}+5)$
05. (B)

$$
\begin{aligned}
& \frac{3 x^{2}}{5}-\frac{11 x}{5}-4=\frac{3 x^{2}-11 x-20}{5} \\
& =\frac{1}{5}\left[3 x^{2}-15 x+4 x-20\right] \\
& =\frac{1}{5}[3 x(x-5)+4(x-5)] \\
& =\frac{1}{5} \times(3 x+4)(x-5)
\end{aligned}
$$

$\therefore(3 x+4)$ is a factor of $\frac{3 x^{2}}{5}-\frac{11 x}{5}-4$
(or)
$\frac{3 x^{2}}{5}-\frac{11 x}{5}-4=\frac{3 x^{2}}{5}-3 x+\frac{4 x}{5}-4$

$$
\begin{aligned}
& =3 x\left(\frac{x}{5}-1\right)+4\left(\frac{x}{5}-1\right) \\
& =\left(\frac{x}{5}-1\right)(3 x+4)
\end{aligned}
$$

6. (C) $\sqrt{120-30 \sqrt{15}}=\sqrt{120-2 \times 15 \sqrt{15}}$

$$
\begin{aligned}
& =\sqrt{120-2 \sqrt{15 \times 15 \times 15}} \\
& =\sqrt{75+45-2 \times \sqrt{75 \times 45}} \\
& =\sqrt{(\sqrt{75})^{2}+(\sqrt{45})^{2}-2 \sqrt{75} \times \sqrt{45}} \\
& =(\sqrt{75}-\sqrt{45}) \\
& =(5 \sqrt{3}-3 \sqrt{5})
\end{aligned}
$$

7. (B) $\frac{14}{\sqrt{6}-\sqrt{5}-\sqrt{11}}=\frac{14}{(\sqrt{6}-\sqrt{5})-\sqrt{11}} \times$

$$
\begin{aligned}
& \frac{(\sqrt{6}-\sqrt{5})+(\sqrt{11})}{(\sqrt{6}-\sqrt{5})+\sqrt{11}} \\
& =\frac{14(\sqrt{6}-\sqrt{5}+\sqrt{11})}{-(2 \sqrt{30})} \\
& =\frac{-7(\sqrt{6}-\sqrt{5}+\sqrt{11})}{\sqrt{30}} \times \frac{\sqrt{30}}{\sqrt{30}} \\
& =\frac{-7(6 \sqrt{5}-5 \sqrt{6}+\sqrt{330})}{30}
\end{aligned}
$$

8. (A) $3 \mathrm{p}(x)+7 \mathrm{q}(x)+\mathrm{r}(x)$

$$
=19 x^{3}-15 x^{2}+11 x+11
$$

9. (B) $\sqrt[3]{4}, \sqrt[4]{5}, \sqrt[4]{6}, \sqrt[3]{8}$
$=4^{1 / 3}, 5^{1 / 4}, 6^{1 / 4}, 8^{1 / 3}$
L.C.M of $3 \& 4=12$

So, the given surds can be written as,
$=4^{4 / 12}, 5^{3 / 12}, 6^{3 / 12}, 8^{4 / 12}$
$=\left(4^{4}\right)^{1 / 12},\left(5^{3}\right)^{1 / 12},\left(6^{3}\right)^{1 / 12},\left(8^{4}\right)^{1 / 12}$
$=(256)^{1 / 12},(125)^{1 / 12},(216)^{1 / 12},(4096)^{1 / 12}$
$\therefore \quad$ The smallest one is $\sqrt[4]{5}$.
10. (A) Given $(x-2)$ is a factor of $p(x) \Rightarrow p(2)=0$
$2^{3}-3(2)^{2}+p(2)+24=0$
$\Rightarrow \quad 8-12+2 p+24=0$
$\Rightarrow \quad 2 p=-20$
$\therefore \quad \mathrm{p}=-10$
Given $(x-2)$ is a factor of $\mathrm{g}(x)$
$\therefore \quad \mathrm{g}(2)=0$
$(2)^{2}-7(2)+q=0$
$\Rightarrow \quad 4-14+q=0$
$\Rightarrow \quad-10+q=0 \Rightarrow q=10$
$\therefore \quad \mathrm{p}+\mathrm{q}=-10+10=0$
11. (C) Let $x=2 \& y=\frac{-5}{2}$ then $5 x-4 y$
$=5(2)-A^{2}\left(\frac{-5}{\not Z^{\prime}}\right)$
$=10+10$
$=20$
= RHS
$\therefore \quad\left(2, \frac{-5}{2}\right)$ lies on the line $5 x-4 y=20$
12. (A) Infinite number of lines can pass through a single point. So, the statement given in option (A) is the incorrect statement.
13. (C)

$\angle \mathrm{BFD}=\angle \mathrm{ABC}=x^{\circ}$
[Corresponding angles]
$\angle \mathrm{FDE}=\angle \mathrm{BFD}=x^{\circ}$ [Alternate angles]
$x+2 y=180^{\circ}$ [Linear pair]
$y=90^{\circ}-\frac{x^{\circ}}{2}$
14. (B) $\angle \mathrm{BCD}+\angle \mathrm{CDE}=180^{\circ}$
$\Rightarrow \angle \mathrm{BCD}+75^{\circ}=180^{\circ} \Rightarrow \angle \mathrm{BCD}=105^{\circ}$
$\angle \mathrm{ABC} \Rightarrow \angle \mathrm{BCD}$
[alternate interior Δ] $=x=105^{\circ}$
15. (C) $\mathrm{C}=\left(180 \times \frac{1}{6}\right)^{\circ}=30^{\circ}$
$\angle \mathrm{ACB}+\angle \mathrm{ACD}+\angle \mathrm{ECD}=180^{\circ}$
[a straight angle]
$\Rightarrow \quad 30^{\circ}+90^{\circ}+\angle \mathrm{ECD}=180^{\circ} \Rightarrow \angle \mathrm{ECD}=60^{\circ}$
16. (A) Given CDE is an equilateral triangle
$\therefore \quad \angle C E D=60^{\circ}$
In $\triangle A E D, \angle A E D=90^{\circ}+60^{\circ}=150^{\circ} \& A E=E D$
In $\triangle A E D, \angle E A D+\angle E D A+\angle A E D=180^{\circ}$
$\angle E A D+\angle E A D+150^{\circ}=180^{\circ}$
$2 \angle E A D=180^{\circ}-150^{\circ}=30^{\circ}$
$\angle E A D=\frac{30^{\circ}}{2}=15^{\circ}$
17. (D) Given $C=116 \mathrm{~cm}, \mathrm{a}=123 \mathrm{~cm}, \mathrm{~b}=89 \mathrm{~cm}$

$\therefore \quad S=\frac{a+b+c}{2}=\frac{(116+123+89) \mathrm{cm}}{2}=\frac{328 \mathrm{~cm}}{2}$
Area of DABC $=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{164 \times 41 \times 75 \times 48} \mathrm{~cm}^{2}$
$=\sqrt{2 \times 2 \times 41 \times 41 \times 5 \times 5 \times 3 \times 3 \times 4 \times 4} \mathrm{~cm}^{2}$
$=2 \times 41 \times 5 \times 3 \times 4 \mathrm{~cm}^{2}$
$=\frac{1}{2} \times B C \times A D=4920 \mathrm{~cm}^{2}$
$=\frac{1}{2} \times 123 \mathrm{~cm} \times \mathrm{AD}=4920 \mathrm{~cm}^{2}$
$A D=4920^{40} \mathrm{~cm}^{2} \times \frac{2}{125_{1} \mathrm{~cm}}$
$=80 \mathrm{~cm}$
18. (C) In $\triangle A R B, P$ is the mid-point of $A B$ and PD\|BR
$\Rightarrow \quad D$ is the mid-point of $A R$
Since, $A B C D$ is a parallelogram
$\Rightarrow \quad D C \| A B \Rightarrow D Q| | A B$
Thus, in $\triangle R A B, D$ is the mid-point of $A R$ and $D Q \| A B$
$\therefore \quad Q$ is the mid-point of $R B \Rightarrow B R=2 B Q$
19. (C) Given $r=3.5 \mathrm{~cm}$ and $r+h=15.5 \mathrm{~cm}$
$\therefore \quad h=15.5 \mathrm{~cm}-3.5 \mathrm{~cm}$
$\mathrm{h}=12 \mathrm{~cm}$

Given height of cone (h) $=12 \mathrm{~cm}$ and radius $=3.5 \mathrm{~cm}$
$\therefore \quad$ Slant height of cone $(l)=\sqrt{\mathrm{h}^{2}+\mathrm{r}^{2}}$
$=\sqrt{12^{2}+3.5^{2}}$
$=\sqrt{144+12.25}$
$=\sqrt{156.25}$
$l=12.5 \mathrm{~cm}$
Total surface area of the toy = CSA of the cone + CSA of the hemisphere
$=\pi r l+2 \pi r^{2}$
$=\pi r(l+2 r)$
$=\frac{22}{7} \times 3.5(12.5+2 \times 3.5) \mathrm{cm}^{2}$
$=11 \times 19.5 \mathrm{~cm}^{2}$
$=214.5 \mathrm{~cm}^{2}$
20. (A) Given $4 \mathrm{~s}=404 \mathrm{~m}$
$\therefore \quad s=\frac{404}{4} \mathrm{~m}$
$s=101 m$

Given $A C=198 \mathrm{~m}$
$\therefore \quad A E=\frac{A C}{2}=99 \mathrm{~m}$
In $\triangle A E B, \angle A E B=90 \Rightarrow A B^{2}=A E^{2}+E B^{2}$
$101^{2}=99^{2}+E B^{2}$
$101^{2}-99^{2}=E B^{2}$
$E B=\sqrt{(101+99)(101-99)}$
$=\sqrt{200 \times 2}=20$
$\therefore \quad B D=2 \times 20 \mathrm{~m}=40 \mathrm{~m}$
Area of the field $=\frac{1}{2} \times A C \times B D$
$=\frac{1}{2_{1}} \times 198 \times 4 \sigma^{20} \mathrm{~m}^{2}$
$=3960 \mathrm{~m}^{2}$
21. (D) $\angle \mathrm{POT}=2\left(25^{\circ}\right)=50^{\circ}$
$x^{\circ}=\frac{180^{\circ}+50^{\circ}}{2}=115^{\circ}$
22. (C) Volume of prism = Area of cross section \times Length
$300=\frac{1}{2}(4+6)(h) \times 12$
$=\frac{1}{2}(10) h \times 12=60 h \therefore h=\frac{300}{60}=5 \mathrm{~cm}$
23. (B) Let $a=10,000 \& b=55$ then
$(a+b)^{3}-(a-b)^{3}=\left(a^{3}+3 a^{2} b+3 a b^{2}+b^{3}\right)$
$-\left(a^{3}-3 a^{2} b+3 a b^{2}-b^{3}\right)$
$=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}-a^{3}+3 a^{2} b-3 a b^{2}+b^{3}$
$=6 a^{2} b+2 b^{3}$
$=2 b\left(3 a^{2}+b^{2}\right)$
$=2 \times 55\left[3 \times(10000)^{2}+(55)^{2}\right]$
$=110[3 \times 100000000+3025]$
$=110 \times 300003025$
$=33000332750$
24. (A) Clearly, $A B C D$ is a cyclic quadrilateral.

Then $\angle B C D=180^{\circ}-\angle B A D$
$=180^{\circ}-100^{\circ}=80^{\circ}$
In $\triangle \mathrm{BAQ}, y+100^{\circ}+25^{\circ}=180^{\circ} \Rightarrow y=55^{\circ}$
$\operatorname{In} \mathrm{ABCP}, y+80^{\circ}+x=180^{\circ} \Rightarrow x=45^{\circ}$
25. (A) Volume of the box $=$
outer volume - inner volume
$=30 \times 25 \times 20 \mathrm{~cm}^{3}-(30-2 \times 1.5)$
$(25-2 \times 1.5)(20-1.5) \mathrm{cm}^{3}$
$=15000 \mathrm{~cm}^{3}-27 \times 22 \times 18.5 \mathrm{~cm}^{3}$
$=15000 \mathrm{~cm}^{3}-10989 \mathrm{~cm}^{3}$
$=4011 \mathrm{~cm}^{3}$
$=401.1 \times 10 \mathrm{~cm}^{3}$
$=401.1 \times 8 \mathrm{~g}$
[Given $10 \mathrm{~cm}^{3}$ wood weight $=85$]
$=3208.8 \mathrm{~g}$
$=3.2088 \mathrm{~kg}$
$=3.209 \mathrm{~kg}$
26. (D) Construction:-

Extend ED up to G

$\angle \mathrm{BCD}=\angle \mathrm{CDE}=90^{\circ} \Rightarrow \mathrm{BC} \| \mathrm{GE}$
$\Rightarrow \angle \mathrm{EGF}=\angle \mathrm{CBG}=35^{\circ}$
[\because corresponding angles]
In $\triangle \mathrm{GFD}, \angle \mathrm{DGF}+\angle \mathrm{DFG}=\angle \mathrm{FDE}$
$\therefore x=35^{\circ}+25^{\circ}=60^{\circ}$
27. (A) $\triangle A B C$ is a right triangle.
$\therefore \quad A C^{2}=A B^{2}+B C^{2}$
$=16+9=25$
$\Rightarrow \quad A C=5 \mathrm{~cm}$
Area of the quad. $A B C D$
$=$ Area of $r t . \triangle \mathrm{ABC}+$ Area of $r t . \triangle \mathrm{ACD}$
$=\frac{1}{2} \times 4 \times 3+\frac{1}{2} \times 5 \times 12$
$=6+30=36 \mathrm{~cm}^{2}$
28. (A) Area of parallelogram with base $A B$ and attitude AM
$=12 \times 9=108 \mathrm{~cm}^{2}$
$108 \mathrm{~cm}^{2}=A D \times 11 \mathrm{~cm}$
$\Rightarrow \quad \mathrm{AD}=\frac{108}{11} \mathrm{~cm}$
29. (C) A point has no dimension
30. (A) Given $\mathrm{AB} \| \mathrm{CD} \Rightarrow\left(\frac{5 x}{3}-\frac{3 x}{4}\right)=77^{\circ}$
$[\because$ Exterior Alternative angles]
$\Rightarrow \frac{20 x-9 x}{12}=77^{\circ}$
$\frac{11 x}{12}=77^{\circ}$
$x=\not 207 \times \frac{12}{11}=84^{\circ}$

MATHEMATICS - 2

31. (B, C, D)

Irrational numbers are part of Real numbers
$\therefore \quad$ Sum of two irrational numbers is always a real number
$\therefore \quad$ Option ' B ' is true $-\sqrt{3}+\sqrt{3}=0$ which a rational number But $\sqrt{3}+\sqrt{5}$ is an irrational number
$\therefore \quad$ Sum of irrational numbers is some times rational number and sum times irration number
$\therefore \quad$ Option ' B ' is false But option ' C ' and ' D ' are true
32. (B, D)

$$
\begin{aligned}
& \text { Given } x^{2}+x(\mathrm{c}-\mathrm{b})+(\mathrm{c}-\mathrm{a})(\mathrm{a}-\mathrm{b})=0 \\
& \Rightarrow x^{2}+x[\mathrm{c}-\mathrm{a}+\mathrm{a}-\mathrm{b}]+(\mathrm{c}-\mathrm{a})(\mathrm{a}-\mathrm{b})=0 \\
& \\
& x^{2}+x[(\mathrm{c}-\mathrm{a})+(\mathrm{a}-\mathrm{b})]+(\mathrm{c}-\mathrm{a})(\mathrm{a}-\mathrm{b})=0 \\
& \\
& x^{2}+x(\mathrm{c}-\mathrm{a})+x(\mathrm{a}-\mathrm{b})+(\mathrm{c}-\mathrm{a})(\mathrm{a}-\mathrm{b})=0 \\
& \\
& x[x+\mathrm{c}-\mathrm{a}]+(\mathrm{a}-\mathrm{b})[x+\mathrm{c}-\mathrm{a}]=0 \\
& \\
& (x+\mathrm{c}-\mathrm{a})(x+\mathrm{a}-\mathrm{b})=0 \\
& \\
& x+\mathrm{c}-\mathrm{a}=0 \\
& \\
& x+\mathrm{c}-\mathrm{a}=0 \\
& \\
& x=(\mathrm{a}-\mathrm{c}) \\
& \\
& \text { (or) } \\
& x+\mathrm{a}-\mathrm{b}=0 \\
& x=(\mathrm{b}-\mathrm{a})
\end{aligned}
$$

33. (A, C, D)

For option A :-
$\sqrt[2022]{2022} \times \sqrt[2022]{2022^{2021}}$
$=\sqrt[2022]{2022 \times 2022^{2021}}$
$=\sqrt[2022]{2022^{1+2021}}$
$=\sqrt[2022]{2022^{2022}}$
$=2022$ which is a rational number
For option B :-
$\sqrt[2022]{2022} \times \sqrt[2022]{2022^{2023}}$
$=\sqrt[2022]{2022^{2024}}$
$=2022 \times \sqrt[2022]{2022^{2}}$ is not a rational number
For option C :-
$=\sqrt[2022]{2022} \times \sqrt[2022]{2022^{4043}}$
$=\sqrt[2022]{2022^{4044}}$
$=(2022)^{2}$ which is a rational number
For option D :-
$\sqrt[2022]{2022} \times \sqrt[2022]{2022^{6065}}$
$=\sqrt[2022]{2022^{6066}}$
$=(2022)^{3}$ which a rational number
34. (A, B, C, D)
$\sqrt{2}=1.4142 \& \sqrt{3}=1.732$
$1.5,1 . \overline{515}, 1.616263 \ldots \& \frac{\sqrt{2}+\sqrt{3}}{2}$ are the real numbers lie between $\sqrt{2}$ and $\sqrt{3}$
35. (B, D)
$x^{2}+2 x-\mathrm{P}^{2}-2 \mathrm{P}=x^{2}-\mathrm{P}^{2}+2 x-2 \mathrm{p}$
$=(x+\mathrm{P})(x-\mathrm{P})+2(x-\mathrm{P})$
$=(x-\mathrm{P})(x+\mathrm{P}+2)$

REASONING

36. (D) The number of white dots is increased by one each time, both vertically and horizontally, and all white dots are connected.
37. (C)

38. (B)

PQ 8AF5BZ9

39. (C)
40. (D) First letter indicates number of lines Second letter indicates thickness of a line .
$\therefore \quad$ The code for right most image is ZM
41. (A) Looking across at the three circles, the number in the middle is the product of the two numbers in the same segment in the other two circles.

Thus, $3 \times 2=6,7 \times 3=21$ and $4 \times 4=16$.
42. (C) Anurudh > Bharath(lawyer)

Doctor > Dhanush (Engineer)
Bharath and Dhanush did not start 40 lakhs Lawyer and Engineer did not start 40 lakhs

Cricketer earned the most at that time so, cricketer also did not start with 40 lakhs.
$\therefore \quad$ Doctor $\rightarrow 40$ lakhs
Doctor > Dhanush (Engineer)
Dhanush(Engineer) $\rightarrow 30$ lakhs
Santosh (Doctor) $\rightarrow 40$ lakhs
Bharath (lawyer) $\rightarrow 60$ laksh
Anurudh (Cricketer) $\rightarrow 70$
Anurudh > Bharath
$\therefore \quad$ Santosh profession is doctor
43. (B) $5+15+5=25 \mathrm{~m}$

44. (A)

45. (C) Brother

CRITICAL THINKING

46. (A)

47. (A) A Devaluation is a conscious decision taken by central Bank of the country to lower the external value of domestic currency. After devaluation of the rupee Indian goods would become cheaper for foreigners.
48. (D)

49. (B) Long moment arm redues force.
50. (D) P and S

The 'End

